
1

DRAFT of Adam Morton, Acting to Know: the epistemology of experiment.



2

CONTENTS 

preface and acknowledgements     3

chapter 0: two evidential strategies     6

chapter 1: sensitive evidence   17

chapter 2: experiments as causal processes   39

chapter 3:  the rules of experiment and the success of inquiry   56
chapter 5: robust tests   86

chapter 6: cause with and without the help of experiment 113

chapter 7: distributed knowledge 149

chapter 8: evidence, finally 174

bibliography 194



3

preface

In this book I develop and defend a novel account of evidence. Evidence supports a

hypothesis,  on this account,  by putting on the path to knowledge. It  applies best to

evidence derived from experiment, and it is indeed intended to express what is special

about this source of  evidence. It  applies ideas from contemporary epistemology to a

complex of  problems that are usually the concern of statistics and the philosophy of

science, centering on the support that scientific practices give to hypotheses. There are

three main themes, which can only be defended, and perhaps only stated, by combining

ideas from several sources in un-traditional ways. They are:

– a general description of nearness to knowledge that applies in a number of 

areas well beyond that of known claims, conclusions, theories, propositions and

the like.

– the use of this to say what evidence is, and how it supports claims.

- a discussion of statistical tests that draws on ideas about possibility and 

combines them with ideas about probability 

- a concept of knowledge, or something knowledge-like, that comes in degrees 

of strength, at the weak end so weak that satisfying it would never justify a 

normal ascription of knowledge 

As I shall develop these ideas they are in conflict with several dominant views in 

epistemology and the philosophy of science. Chapter 0 gives a foretaste of this and 

chapter 8 puts the pieces together into a single coherent position. Each of the chapters in

between discusses a single topic in isolation in a form that I hope will stand on its own, 

avoiding a house of cards construction where a single failure can bring down the whole 
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business and allowing readers who are unconvinced by some claims to be persuaded by 

others. 

Fasten a pair of calipers tightly around an object. You can then read how wide and often

how solid it is. If you come to think that your measurement was wrong you know how to

go about repeating it, if need be with an improved tool. This gives a model of a  certain

kind of information-gathering. We interact causally with things, in a way that allows us to

change, correct, and expand our information. The information doesn't just pile up, as a

storehouse of items that can be true or false of their objects. Rather, the causal process

that provides information also gives us ways of correcting, improving, and extending it.

And the capacity to do this is in some respects more important than the accumulation.  

While thinking and writing about experiment and evidence I did a series of interviews

with experimenters at UBC. These were friendly and interesting occasions and I learned a

lot  from them.  I  am grateful  for  many people's  help.  They include Holly  Andersen,

Marcel Bally, Prasanta Bandyopadhyay, Jess Brewer, Matthew Cobb, Allan Franklin, Clark

Glymour,  Madelyn  Glymour,  Jason  Grossman,  Francesco  Guala,  Kiley  Hamlin,  Parisa

Mehrkhodavandi, Sonia Memetea, Slobodan Perovic,  John Petkau,  Margaret Schabas,

Toni Schmader, Trish Schulte, George E Smith, Dan Steel, Douw Steyn, Mike Whitlock,

and Karen Zwier. Alirio Rosales has been a constant source of advice and comment.

Susanna Braund wanted me to write a rather different book, so I hope she is not too

disappointed in the one I was able to write.

The link between causation and experiment plays an important role in the work of two
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philosophers who I take to be arguing for positions that resemble mine, but which I shall

only  discuss  in  passing.  Ian  Hacking's  Representing  and  Intervening  has  inspired

sociologists  and historians  of  science to pay attention  to  experimentation  as  a  basic

scientific activity with its own culture. This book convinced me when I first read and

indeed reviewed it that issues about realism need to be approached in terms of scientific

activity as much as scientific doctrine. But its emphasis is not on evidence so there are

not many direct links with my themes in this book.  Similarly with James Woodward’s

work.  Woodward  says  very  little  about  the  connection  between  experimenting  and

evidence, and my approach to causation is motivated by that connection.  In order to

discuss him I would have to supply connections that might well not be his or which he

might even oppose. So I say nothing substantive about either Hacking or Woodward

although they have both influenced my thinking about experiment.
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chapter 0: two evidential strategies  

This mini-chapter introduces a distinction about evidence that will underlie what follows.

The subsequent chapters refine it and defend its usefulness. But they aim at a number of

component issues, which are not put together until the final chapter 7. So to give some

perspective  here  is  a  glance  ahead.  The  chapter  is  constructed  around  an  example

illustrating the distinction. It contrasts two general strategies for supporting a hypothesis.

One  strategy  understands  the  relation  between  a  hypothesis  and  evidence  for  it  as

similar  to  the  relation  between  states  of  mind  and  the  environment  when  one  has

knowledge.1 The other strategy understands it in terms of norms or standard procedures

of rational belief-formation. Various forms of this second strategy are usually taken for

granted in discussions of evidence, but I am defending the first one and contrasting the

two. Its advantages are greatest when evidence is collected by experiment

the train case

Two passengers, Sophia and Norm, are on a train that has gone through a series of

branching junctions. They fall asleep and wake feeling that they have slept for a long

time and with doubts about whether they are on the right train. Their aim had been to

get to one destination (D1) but they fear that they are by mistake on a train heading for

another (D2). So they look out the windows, consider the landscape, and compare it to

1 Vaguely "environment" to avoid building propositions or facts into the ontology. Complexes of possible
worlds would probably do but I want a minimum of orthogonal issues in this connection. Propositional
attitudes such as belief are hard enough to understand in relational terms, but factive attitudes such as
knowledge, which require a really existing "object" are even more puzzling.
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what they know about the route. They see near mountains and further away a large lake.

This could fit a number of places along the way (see the diagram).

Assuming that they have slept for a good while the superficially best fit is with B1, which

would mean that S and N are headed for D2. But in fact, what they thought was a long

sleep was just a nap and they are leaving A0, so headed for D1. Here are two ways of

deciding where they think they are, and for each a corresponding way of evaluating the

resulting belief.   

(a) realist, Sophia’s strategy: look out the train window, use the observation to decide

between two previously chosen alternatives. Count the result a success if it gives a

true belief, and in circumstances where you would have chosen its alternative that

alternative would have been true instead. 
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(b) norm-based, Norm’s strategy: look out of the train window and use what you see

in  reasoning  leading  to  whichever  hypothesis  it  makes more  probable  given your

background information, notably about probabilities. Count the result a success if it

gives a true belief in this and other probable situations.

The relevant difference between (a) and (b) is that on (a) possibilities that are nearer to

actuality (in this case, require fewer branchings away from the actual history) are central

while on (b) one prioritizes the more probable possibilities, given what else one believes.

There are obviously other ways to form beliefs in situations like this and other ways to

evaluate the results. My interest in these is as contrasting two evaluations of the force of

evidence. The realist method will in this case deliver hypothesis 1, and will count this as

a success.  For  in  fact  we have just  passed A0 and are  thus on  the  way to  D1,  as

hypothesis 1 asserts. Moreover in the nearest alternative situation where the method

would have given the alternative conclusion, that we were headed for D2, hypothesis 2

would have been true, since we would be around B1.

The norm-based method will fail in this case; Norm’s conclusion is false and Sophia’s is

true We think it  most  probable  that  we have slept  for  a  while,  and the most  likely

mountains-then-lake scenery given this is along the central two routes, suggesting the

false hypothesis 2.

The reason for the failure of the norm-based method is its use of wrong probabilities.

(We think that we have probably slept for a long time.) The reasons for the success of
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the realist method are that it centres on the actual situation, whether or not the person

can describe its relevant features, and compares the two alternatives in terms of their

treatment in the nearest situations where they would be chosen, in this case those that

are  least  distant  and  involve  fewest  branchings  from  the  starting  point.  These  are

possible situations that require changing causal features of the actual situation least, so

that the result is evaluated in terms of its treatment of objectively similar situations. 

knowledge and evidence

A main aim of this book is to make a case for ways of evaluating evidence generally like

Sophia’s objective method above. A single example does not show much, as the method

might have been specially fitted to fit the example. A general justification is needed.

Experiment is closely related to it, and gives some of the clearest and most convincing

cases. I described it as if our travellers were accepting one hypothesis or the other on

the basis of what they saw from the train window. The criterion for knowledge was along

the  lines  of  what  are  standardly  called  "safety"  considerations.2 But  we  might  more

generally  be  concerned  with  which  hypothesis  the  evidence  supported  best,  even  if

neither was supported well enough to be a candidate for knowledge. In the example the

similarity between full knowledge and the situation of the hypothesis given data is not

hard to describe. Substitute "prefer" for "accept" throughout, "would have been nearer to

truth (in the nearest situation)" for "would have been true" in the realist method and

"more often true” (in similar situations) in the norm-based method: the result is not a

criterion of knowledge but one of evidence. This is what I shall call K-evidence and slowly

2 Contrasted with "sensitivity" considerations. The contrast between the two is however minimal 
when we are choosing between two incompatible hypotheses. See Chapters 6 and 7.
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characterize,  contrasting  it  with  the  norm-based R-evidence.3 Then  the  pieces  are

assembled in the conclusion chapter. 

Two contrasts between the strategies are particularly important (for my purposes, at any

rate). The first is that K-evidence is independent of the agents' beliefs, prior knowledge,

and the like, and of what is rational for or according to agents. Indeed, one can have this

kind of evidence without knowing that one has it, and without knowing how it compares

to the evidence one has or would have for another hypothesis or given different data.

This is so for generally the same reasons that one can know or fail  to know without

realizing that what one has is or is not knowledge, and that one will usually not assess

the extent of one's knowledge or ignorance accurately. The second contrast is between

possibility and probability. As I am construing K-evidence it makes essential use of what

can or might happen or be the case, understanding this as a generally speaking causal

notion — what can occur given that the world works the way it does — and moreover of

degrees of possibility as expressed in terms of nearer and more remote situations or

possible worlds. The versions of the norm view that will concern me most, in contrast,

make  essential  use  of  the  concept  of  probability.  I  shall  argue  that  this  has  to  be

understood as itself a generally causal concept. 

A connection between the two: K-evidence indicates the range of similar circumstances a

hypothesis holds, and in which action based on the hypothesis will usually succeed. N-

evidence indicates factors normally but not necessarily correlated with this range and

3 Part of the wider importance of the norms/knowledge contrast is the fact that statistical ways of collecting
and evaluating evidence seem arbitrary and alien to many. Why defer to these? Objective standards of 
evidence allow the beginnings of answers. But issues about the public perception of science are not 
central to this project.  
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typically useful as inputs to standard patterns of reasoning, whose reliability can vary

according to features of the situation of which the person may not be aware. 

Each way of understanding evidence has its advantages. My job is to sing those of the

underappreciated objective approach. A disadvantage of the norm-based approach is the

potential indefiniteness of its targets, and the associated endless list of norms that would

have to be considered. Consider the variety of  factors that one could rationally take

account of. The most immediate is available data that is easily understood and already

rich and varied. But beyond this there is evidence of further data not in one's possession.

This comes in a number of forms, which are relevant to belief in a number of ways.4

Further beyond there are reasons to think that more information can be got from the

available  data  than one has managed to  extract.  And often  there  is  reason to  take

account of one's own likely failures to interpret data.5 In quite a different direction there

are principles of not wasting time and thinking power and not over-scrutinizing evidence

(understanding and following which can waste a lot of time and thinking power). Which

of these constitute norms of reasonable evidence? In what ways are they similar? It

seems that even beginning to think in this way one is being led into a labyrinth.    

experiment

4  Christensen (2010), Tal and Comesaña (2017) 

5 In Morton (2012) I develop an attitude to issues of human fallibility and finiteness, based on the concept 
of an epistemic virtue. These topics will feature very little in this book. A simple connection between 
epistemic virtues and K-evidence is that sensitivity to K-evidence of some kind, including evidence one is 
not conscious of having, is an epistemic virtue in that it is disposes one towards corresponding true 
beliefs.
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Both kinds of evidence are available to both Sophia and Norm, though each will use just

one to shape their beliefs. Norm may not be aware of the force of the available objective

evidence. Indeed Sophia may be ignorant or mistaken about it also. Some degree of

inaccuracy is almost inevitable, and to that extent her grasp of the force of her evidence

and the reaction to it is likely to be somewhat rough.

When the source of  objective evidence is  experiment,  though,  this  problem is  much

diminished. Experiments are deliberate and carefully controlled processes, designed to

give results of particular kinds for particular reasons. So when you run an experiment

you know what evidence has been produced. The lake or the mountain may be too far

away for Sophia to see them, so she may use binoculars; it may be dark, so she may

shine a light to see if there is a reflective twinkle from the water. Then she will combine

the advantages of objective and norm based evidence.

Experiment has other advantages also. The planning and control will make it easier for

two or more people to cooperate in producing and assessing the evidence. It will thus

allow them to combine their practical and thinking powers. Indeed an experiment often

requires the efforts of several or many people. Norm may help Sophia construct and

operate  her  experiment,  perhaps  because  she  has  designed  it  she  is  not  good  at

operating  apparatus.  Then  he  is  likely  to  appreciate  the  reasons  supporting  her

conclusion.

The result is that experiment often leads to knowledge. Of course there is non-shared

knowledge also. But experiments often lead to better knowledge, knowledge that has its
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defining features to a  greater  degree.  The evidence it  uses will  have more of  these

advantages than evidence that leads to more marginal knowledge.

modality

As the train navigation example suggests, objective accounts rely on ideas about what

can  or  would  occur,  particularly  what  beliefs  someone  would  have  in  different

circumstances and which of these would be true. These are to be understood as real

objective facts about a person and her environment, which like all such facts can be very

different  from  what  we  think  they  are.  The  most  important  modal  facts  concern

causation, and I shall  refer to the whole category of concepts as causal. While some

philosophers  resist  the  idea  that  facts  about  causation  and what  might  occur  under

various circumstances are independent of our opinions, it would be very bad news for

human decision-making if they were not so independent. We often plan in terms of them:

if I do this the following will occur; an action of this type would cause a result of this

other  kind.  We obviously  need  our  opinions  about  these  to  correspond  to  what  will

actually occur, and if they fail too often the cruel world will take its penalty. So there

ought to be a presumption in favour of objectivity. The use of causal ideas in decision-

making  also  suggests  that  they  are  important  in  belief  formation,  since  a  primary

function of our beliefs is to guide our actions.

Causal and modal concepts will play important roles throughout. My way of organizing

them will  be standard and unoriginal:  the possible  worlds  orthodoxy of  propositions,

sentences, beliefs and the like, true or false (or holding) in possible worlds (or situations,
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or possibilities — simply stylistic variations here). This will often be represented using

Lewis's spheres of proximity or in some other way. And I shall assume that there is a

relation of nearness between worlds, in particular to the actual world. (The inverse of

nearness  is  remoteness.)  The  immediate  application  of  nearness  is  in  the  standard

definition of a counterfactual, or better subjunctive, conditional, which I shall  stick to

unless  otherwise  signalled,  as  true  in  a  world  w when  the  consequent  holds  in  the

nearest  world  or  worlds  to w where the antecedent  holds.  Then we can define "the

nearest world where p is true is nearer than the nearest world where q is true", as 

((pvq) & ~(p & q))    p , where   is the counterfactual (if exactly one of them is true it

is p). I take it that an intuitive concept of the nearness of possibilities is implicit in our

everyday use of the counterfactual, and in idioms such as "if, and it is a big if,…" and

"just possibly" or "it is remotely possible that…".6

And, possibly most contentious but not defended here, I  shall  assume that the truth

values of counterfactuals are matters of objective fact, at any rate as much as most of

our truth-value-receiving claims. "If the incision had been a millimetre to either side she

would  have died"  says  that  in  situations  where there  is  a  tiny change in  the actual

history,  such as  a  tremor  in  the  surgeon's  hands,  making  the  incision  just  different

enough, she does not survive. She really would not have; it is a medical fact that might

be the basis for legal action and might be explained by some true medical theory. It does

not mean that she would have died in more "remote" situations like that where the

6 Some idioms for evoking degrees of possibility are also associated with probability. When discussing what
would happen if humans colonized Mars we say they would have long term food production problems, 
partly because their being wiped out by indigenous intelligence Martians is less likely than their 
confronting a hostile planet with at most primitive life. A common framework for possibility and 
probability is highly desirable, but I am not offering it.
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surgeon hiccups but a force field from outside the operating theatre manoeuvres her

organs out of the way.7   

7 I require only that nearness/remoteness be a partial ordering. 
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chapter 1: sensitive evidence

kinds of evidence

Some evidence is better than others. But there are many forms this can take. Better

evidence can suggest  how to get further  evidence; it  can get us further  along from

conjecture to acceptance;  and its objective connections with the hypothesis it supports

can be stronger. The focus of this chapter is to the second and third of these. But they

are all linked in obvious and subtle ways. The hope in accepting a belief, hypothesis, or

conjecture is to gain knowledge of its subject matter, that is at a minimum to have an

account of it that is true and held because of influence of the facts that make it true. (In

the past fifty years epistemologists have laboured make precise versions of this rough

idea. Those not in the tribe will often think this is just a symptom of obsessiveness; a

secondary aim is to show the importance of the project for real inquiry.) Of course, most

evidence  leads us  well  short  of  knowledge.  Weak evidence  is  still  evidence.  But  the

connection  with  knowledge  consists  in  more  than  a  general  aim to  attain  it.  Better

evidence often has a knowledge-like relation to a hypothesis, as chapter 0 hinted and

this  chapter  aims  to  explain.  This  relation  is  brewed  from the  same  ingredients  as

knowledge, but differs in that it can be much weaker; it is a connection rather than an

attribute, sometimes connecting evidence to conjectures that are still conjectural. I shall

say that evidence that has an appreciable degree of this to-be-explained knowledge-like

quality with respect to a hypothesis (theory, belief, idea, …) is sensitive evidence for it.8 

8 Sensitive evidence is similar to what philosophers of science call robust evidence (Achinstein 2001, Staley
2004). I am using a different term partly to emphasize the affinity to an overarching concept of knowledge,
and partly because the discussion in the philosophy of science is not usually explicit on a crucial aspect for
my purposes, that it is a matter of what actually is the case rather than what a scientist, or would-be knower
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Evidence  derived  from  well  conducted  scientific  experiments  provides  core  cases  of

sensitive  evidence,  although  there  are  instances  in  everyday  life.  And  in  fact  the

continuity between everyday and scientific uses of gathering such evidence is part of

what gives it intuitive force in science and part of what gives anti-sceptical arguments

their  plausibility.  (It  also  motivates  a  reason  for  a  kind  of  scepticism  about  many

everyday beliefs, as I explain in the book’s conclusion.)  

Sensitive evidence comes in degrees, with respect to both support and progress towards

knowledge. Some experiments deliver its  advantages more than others. So do some

everyday epistemic procedures. How sensitive a particular item of evidence happens to

be  is,  however,  often  a  factual  matter  that  is  not  easily  known.  I  shall  give  some

examples of varying degrees of sensitivity, to summon the intuitions that I then try to

capture.

insensitive evidence

I shall begin with examples of the kind of evidence that is not very sensitive.

I am investigating a favourite author, Julia Scriptor. At first I know nothing but that she

wrote the book I admire, but then I learn that she was born in 1910. (Suppose that I

learn nothing else, and suppose that I learn this simply by chancing across her birth

certificate or from a note on the copyright page of a book.) On learning this I think that it

is probable that she is no longer alive, and in fact I take this for granted in my further

in general, believes.
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research. The statistical probability that she is not with us is very high. So there is an

obvious way that the birth information is evidence for the belief that she is dead.

There is something rather indefinite about the evidence, though, in spite of its power to

bring a conjecture near to  belief.  Suppose that in  fact  Ms Scriptor  is  still  drawing a

pension. This will not change the information that she was born in 1910, or the process

that brought this information to my attention, so that if I had checked up on it I would

not  have  noticed  anything  different.  Similarly  if  she  has  died.  The  evidence  is  not

sensitive with respect to the conclusion I base on it, in both the crude sense that it would

be the same if she has not died, and the more detailed sense that if she has died then

the evidence would be the same whether she died a little earlier or later or if the cause of

her death were different.

Another everyday example, circumstantial evidence. The accused had a grudge against

the victim and stood to gain from his death. Moreover, she has a PhD in biochemistry,

and the victim was poisoned. So it is natural to suspect her, and the victim's family are

not  unreasonable  in  taking  her  to  be  responsible.  But  again  there  is  something

unsatisfying about the evidence, which her defence lawyer would no doubt draw attention

to, by saying that it is all "circumstantial". No fingerprints, no witnesses, no DNA, no

precise verifiable timeline of  her movements. Again, we can get a hold on what this

circumstantiality consists in by noting that her crucial actions with respect to the victim

(poisoning or not) have no effect in shaping the evidence: it is the way it is whatever she

has done. The evidence raises the probability that she is guilty, but is not sensitive to the

facts.  
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Another way of putting it. The process from fact to evidence is not at all like a measuring

or imaging device or an experiment. It does not take a situation and transform it into a

form that gives different information depending on the nature of the situation. This is a

rough suggestive way of putting it. We need a characterization of experiment to know

whether the metaphor has any depth.

Now an example from science. The evidence that the extinction of the dinosaurs was

caused  by  the  impact  of  an  asteroid  consists  in  the  signs  of  an  asteroid  impact  in

Yucatán, and the layer of iridium in many places at about the right stratum to date with

the  beginning  of  the  dinosaurs’  decline  as  measured  in  the  standard  ways  in

paleontology. No one takes this to be conclusive but it is generally thought to be fairly

strong evidence. It is an inference to the best explanation: this hypothesis accounts well

for the data. But strong though it is, it is not very sensitive. The path from dinosaur days

to now preserves signs of impact and fossils, but not results of asteroid-induced death.

Not even signs of starvation or cold. Such evidence is conceivable, but we do not have it.

So it is not at all like a chronoscopic view of the relevant events, but a transmission of

other bits of information, which we can put together and add up to something.

As this suggests, insensitive evidence is often valuable. It is often all we have or can

have. But it will not often do what sensitive evidence can do.

The dinosaur case is an instance of inference to the best explanation. The asteroid impact

is the best account we can put together of why the non-avian dinosaurs died when they
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did.  There  are  many  other  examples.  One  more  is  Wegener's  original  proposal  of

continental drift. Alfred Wegener, to simplify the history, noticed that the coastlines of

Africa  and  South  America  fit  together  and  noticed  numerous  geological  continuities

interrupted by oceans. So he hypothesized that continents can drift. Orthodox geologists

of his day reacted with "yes, that's nice and neat, but where is the evidence? And how on

earth  —  or  in  earth  —  could  this  happen?"  Decades  later  the  study  of  magnetic

alignments and of volcanic rifts suggested that the continents float on plates which move

and collide. The geologists said "Oh, Wegener was right, but now we can really confirm it,

and see how it happens."

The absence of suggestions about mechanism in the purely geographical considerations

creates a barrier to further investigation. They don't tell us which continental movements

can be explained by the hypothesis and which cannot. We cannot distinguish between

geography that by coincidence is as if produced by continental drift, and geography that

really does result from it. Note that some accidental matchings of the geography to the

hypothesis might fit it better than geography that is in fact caused by the hypothesized

processes.  But given just  Wegener's  considerations, we have no way of  investigating

which these may be. 

The problem here is a more subtle one than in the dinosaur case. Continental drift does

cause the shape and distribution of the continents, generally and approximately. And if

the precursor continents had possessed very different shapes and locations then the

present continents would not have the shapes and locations that they do. So the truth-

making facts do cause the observations. But this early version of the theory gives no idea
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of the process leading from one to the other. So Wegener was left in much the position of

an early microscopist who in the absence of suitable optical knowledge can only say "look

into this eyepiece, and you will see marvellous things, for reasons that we do not yet

understand." This suggests a somewhat opposite way of putting the point: it would rarely

be the case that had Wegener obtained a different, negative, conclusion it would have

been because he was dealing with examples where accident rather than continental drift

was responsible.  (Rarely rather  than even a qualified Never because it  concerns the

character of the evidence rather than the status of the conclusion it supports. There is

evidence for false hypotheses, as well as evidence for true but unknown hypotheses.)

positive examples: experiment

These have been cases where evidence is deficient in sensitivity.  Contrast them with

cases where sensitivity  is  abundant.  Naturally,  evidence  provided by experiment  and

measuring apparatus is  a source of  these.  But it  is  not the only source.  Begin with

experiment.

One typical biological experiment concerns a species of fish, Bluehead Wrasse, in which

the same egg-laying sites are used over generations.9 The question is whether these

sites have intrinsic attractions or advantages, or whether on the other hand there is a

“tradition” of using these particular sites which is transmitted from one fish generation to

another. The experimenters took fish from two traditional nesting sites on two different

reefs and exchanged them. In the unfamiliar reef each used sites which were not the

same as those which the resident fish had used. The fish were then returned to their

9 Warner (1988), described in Balcombe (2016). 
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original reefs; they went back to using the sites that generations of their ancestors had

used.

The experiment gives evidence that it is tradition rather than the attributes of a site that

influences choice. The familiarity of the reef causes the fish to reuse traditional sites.

Moreover we have grounds for knowing that this happens, in that when the reef is not

familiar traditional sites are not used. (If not cause then not effect.) Changing familiarity

results in changing use. So the evidence is sensitive to the facts that it supports. The

return to the traditional sites when the fish are once again in their home reefs reinforces

this conclusion, and also helps rule out an alternative explanation of the behaviour in the

experiment, that the neglect of the formerly used sites in a new reef is due to the stress

of  capture  and  displacement.  Confirming  both  that  the  fish  were  influenced  by

remembered  tradition  rather  than  perceived  advantage,  and  that  they  were  not

influenced by stress, would have been hard or impossible with passive observation rather

than active experiment. 

Another example is a classic experiment concerning the replication of DNA. After Watson

and Crick discovered the structure of DNA in 1953 and suggested that processes that

copy it during cell division might be the basis of heredity, the question of how DNA is

copied became important. An experiment by Meselson and Stahl answered some basic

questions about how the copying happens. It is an extremely elegant experiment and has

been described as "the most beautiful experiment in biology".10 

10 Meselson and  Stahl 1958, Cobb 2015, Franklin 2016).
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There  were  three  current  plausible  suggestions  about  how  the  two-stranded  DNA

molecule is copied. The first was that both strands are independently copied, leading at

first to the original molecule and one duplicate and then to duplicates of each of these,

and so on. The second was that each strand is copied and then combines with the strand

from which it was copied, leading at first to two copies of the original, each of which has

one original strand, and then to similar duplication of each of these. (This was Watson

and Crick's guess.) The third was that each strand is broken into segments which are

then recombined to make double-stranded copies.

The three hypotheses have different predictions about the distribution of atoms and other

components  from  the  original  DNA  molecule  in  subsequent  generations.  The  first

suggestion entails that the atoms of the original molecule stay together and all except for

that one are entirely composed of new atoms. The second entails that the original atoms

are at first distributed between two copies and later found in exactly two copies. The

third entails that the original atoms are at first distributed between two copies and then

later scattered between many. Meselson and Stahl saw that which of these consequences

is the case could be revealed by exploiting the fact that DNA molecules contain large

proportions of nitrogen, which comes in a lighter and a heavier isotope. They grew E. coli

on a culture that provided them exclusively with the heavier isotope, and then abruptly

changed to a culture with the lighter isotope. They extracted DNA both after one cell

division and after many, and centrifuged it to reveal the distribution of molecules by

weight. (I am omitting many details, inevitably.) The result was that after one generation

the molecules were divided by weight into two peaks, and, as the generations went by,

the weight appropriate to one original strand was always present though in diminishing
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proportions, and moreover the weight appropriate to both strands being copied increased

in proportion, in amounts that the second hypothesis predicts. Moreover there were no

peaks in the weight distribution at intermediate points. Neither the first nor the third

hypothesis predicts this, though the second does. 

The experiment provides good evidence for the second hypothesis when it is compared to

its rivals. How it does this a topic for chapter 4, but it seems obvious in this case that the

evidence does provide this. The duplicating mechanism and the hypothesis are connected

in a clear way. The introduction of the isotope causes the separating strands to have

different weights which causes them to behave differently when centrifuged which causes

the observed lines. Here differential confirmation and sensitivity go together,  as each

alternative physical possibility would cause an alternative body of evidence.

In this experiment a situation is created in which different hypotheses will have different

consequences  which  can  be  distinguished  quantitatively.  There  is  a  deep  connection

between experimentation and quantitatively formulated hypotheses. If hypotheses can

be differentiated in precise terms — is the value of the parameter 0.300 or 0.299? —

then fine differences in their consequences can differentiate between the hypotheses, if

we can find ways to measure them. This has been an essential feature of science since

Galileo. Numerical functions of consequences, test statistics, can allow us to distinguish

finely differentiated hypotheses even when our measurements are fairly crude. However

we can do this only when we have some assurance that we have blocked unwanted

causal processes from interfering.
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more carefully  

Sensitive evidence is a causal matter, in the general way that includes causation, physical

possibility,  and  the  counterfactual  (subjunctive)  conditional.  Anyone  discussing  such

topics  needs  a  flexible  and  expressive  way  of  making  distinctions  among  them.  In

chapter 0 I described the apparatus of possible worlds and said that I would use it in

spite  of  the  worries  one  might  have.11 I  shall  simply  use  this  apparatus  in  an  un-

interpreted way, letting readers put their favourite gloss on it. In particular, I shall rely

pretty fundamentally on the relation of comparative nearness between possible worlds,

as also explained in chapter 0 where I suggest how it can be defined in terms of the

counterfactual  conditional.  Note  that  as  a  sometimes  inconvenient  limiting  case  this

conditional is true when both antecedent and consequent are actually true (since the

nearest world to the actual world is itself).

Nearness of worlds can also be used to pin down other "modal" ideas such as what might

happen or would be possible if something were to occur, and to explain vacancies and

ambiguities in the ordinary use of "possible", "necessary", and the like.  (It won’t tell us

what probability is, though.12) 

Now suppose that we have some evidence, given by a true report e, and a hypothesis H,

and we know that H would cause e if it were true. Take this to mean that in all or most

11 Philosophers have a love/hate relationship with the apparatus of possible worlds. On the one hand it
gives a systematic way of connecting and organizing these related concepts, which moreover makes
intuitive sense. On the other hand most philosophers find it hard to believe that there are any such
things, so they become a handy tool for conceptual purposes, which one hopes to interpret in some more
primitive  and  realistic  terms,  chosen  in  accordance  with  one's  philosophical  preferences  and
commitments.

12 This is significant because of the importance of probability in hypothesis testing. I have hopes that ideas 
about modality and about probability can be used to put a squeeze on one another. But that is another 
project.
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possible worlds from actuality to the nearest world where H is not true, e does not hold.13

Then when e does occur, an observer can infer that H holds in a range of worlds between

actuality and the nearest world where not-H, those where e is true. (Because then given

the truth of the causal connection we know that H fails unless e is true.) So H is held in a

generally knowledge-like way, with a greater resemblance to knowledge the greater the

range of possible worlds, especially those near actuality. It may be that e holds only in

actuality. In that case, while the observer may not be irrational in thinking that H , they

are making a mistake: although it is true it is not known. This kind of mistake will, given

the best intentions and control, often occur, especially on a "realist" understanding of

evidence,  where  the  crucial  factor  is  whether  the  facts  are  accurately  represented

because of the interaction between the person's capacity to form beliefs and the specific

situation  that  makes  the  relevant  belief  true.  It  is  the  inappropriateness  of  this

interaction that results in the true beliefs not being knowledge.  

The tighter the similarity to knowledge the greater the range of situations where the

hypothesis, as gained by the methods in question, will hold, and therefore, given mild

assumptions,  the greater the range of  situations where conclusions drawn in  parallel

ways will  be true.  That  is  a central  importance  of  knowledge.  This  range is  limited,

though, by the range of situations where the evidence will occur. As a result, there are

strong reasons to organize experiments around robust ways of producing evidence, those

that are effective under variations in the situation. We typically use very robust ways of

producing evidence when we make measurements, experiments that are so reliable that

13 This formula resembles both Lewis's and Mackie's accounts of causation, in different ways. It resembles 
Lewis's core idea (Lewis 1980) in its "if not then not" form, and it resembles Mackie's (1965) in that it 
embeds a sufficient condition within a necessary condition. Note that Lewis's formula is not suited to 
apply to non-actual events in its original form, because it entails that every non-actual event causes 
every actual event. My blowing my nose causes the world not to end. The theme of multiple accounts of 
causation recurs in chapter 5.   
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we often do not consider them as experiments. These are themes that will return in the

next chapter. 

positive examples: non-scientific

Procedures that share basic features of experiment are not confined to science. One finds

out if someone is awake by whispering a message; one finds out if there is water in the

well by dropping a pebble; one finds out if the enemy is still out there by sticking one's

head  above  the  parapet.  Moreover  these  are  things  that  people  have  always  done,

sometimes in much the manner of a scientific experiment. There is nothing exclusively

scientific about doing something to learn something.

Some knowledge-directed actions are very subtle and push at the limits of action. Among

these are social gestures. One raises an eyebrow, looks directly at someone, or smiles in

order to discover the other person's reaction. Here is an example from my own life. I was

on a committee interviewing for a senior post. A letter for one candidate said that he

does not "suffer fools gladly". The committee was uncertain what this familiar phrase

might mean this case, so I undertook to find out. At the interview I asked him a really

stupid question, confusing two terms. He reacted with ferocity and contempt, settling the

issue for us.

The evidence here — the candidate's behaviour — is elicited by a deliberate experimental

action. It is also fairly sensitive. The candidate's combination of confidence, intolerance,

and tactlessness produces a different behaviour than, say a well-informed desire to help
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the other person escape their confusion would have. The interviewer’s (my) intervention

is designed to produce sensitivity, so that the cause can be read back from the effect.

The interview example is a special case of a strategy that is essential to folk psychology,

our everyday understanding of one another. Folk psychology is essential to human life

because our mode of  operation is  based on cooperative activity  which is  largely  not

instinctive but thought out task by task. As a result we rely on expectations about what

other people will do, and for that matter about what they expect us to do (Morton 2002).

But we are remarkably unable to give precise predictions of actions on the basis of other

people's information and motives. This is not surprising given that just about any belief

and desire is compatible with just about any action, given other beliefs, desires, and

other states of mind, including that it would not be crazy to think the person might have.

So there is an important question about how we avoid being in the dark about matters

that require wariness and trust.

A large part of the answer is that people interact when they engage one another14. That

is, we routinely do things to test our conjectures about one another. You ask a friend to

steady a ladder while you climb it to clear leaves out of a drain trough. Before you even

put a foot on the ladder you glance at him to make sure that he is in position and meet

his eye to make sure that he is expecting you to go up the ladder now. You look up to

where the head of the ladder meets the wall and check that his attention is also focused

on this likely problem spot. As you go up, you occasionally stamp one foot or the other in

14 But not the whole answer. In fact, we should not take for granted any easy estimate of how or in what 
ways we are wrong about one another. One unscientific method that complements the probing that I 
have described occurs when people in effect agree to adopt certain motives for their interactions. Then 
they think that they are getting evidence of one another's states of mind but in fact they are guarding 
against the possibility that the deal has been broken. This is not the occasion to defend this position.
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order to confirm that he is holding it steadily and in fact that the vibration is damped by

his grip. You do all this automatically, without any reflection or sense of ingeniousness.

For that is the way we humans do things together, continually testing our predictions

about motive and action.15

Thus does experiment-like social intervention buttress folk psychology. Folk psychology

operates  by  a  constrained  inference  to  the  best  explanation,  constrained  by  innate

tendencies to understand and interact with one another in particular ways, among other

things. The pattern is often found as a way of reducing the dangers of explanation-based

inference.16 We form a hypothesis on the basis of its explanatory power, but often we do

not trust what we have conjectured until we have been able to test it with a suitable

experiment. One reason why this works is that we can fine-tune experiments so that

they  rule  out  alternative  explanations.  What  we  are  left  with  is  the  best  available

explanation of a larger body of data, which has been deliberately produced so that it will

if it can be produced leave much reduced room for alternatives. (There is even less room

for alternatives if one is choosing between a fixed very finite set rather than between a

hypothesis and all possible alternatives. But then the suitable choice of alternatives is

crucial. We will get to that.)  

There are broadly analogous patterns with non-deliberate ways of gathering information.

Perception provides many examples.  Perception uses pretty reliable causal connections

between  facts  and  the  information,  often  unconscious,  that  we  receive.  These

15 The great variety of experiment-like procedures outside science has a fuzzy borderline with others where 
one also deliberately produces something although it is not a physical situation. For a controversial 
example, the use of intuition in analytic philosophy involves careful construction of cases so that they 
satisfy some criteria while avoiding some traps, particularly rival diagnoses.

16 The travails of the inference to the best explanation, once thought to be the all purpose solution to 
epistemological problems, are described in Lycan (2005).
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connections would not serve their purpose unless they were sensitive: when what you

are perceiving changes in perceptible respects then your perception changes. And this is

a source of much of our evidence. So what needs to be discussed is not whether we are

dealing with a sensitive source of evidence but when the connection is tuneable, whether

we can know and control its sensitivity.

Perceptual  processes  are  often  tuneable.  That  is,  many details  of  perception  can be

adjusted in accordance with perceptual conditions and preliminary output. This can be as

simple and automatic as dilating your pupils when the illumination is low, or turning your

head  so  that  neither  ear  points  away from the  source  of  sound.  There  are  learned

procedures that complement these, such as sniffing deeply to identify a smell when you

Ifhave a cold, or for that matter wiping your glasses.

We tune perceptual mechanisms also in response to the plausibility of what they seem to

suggest. You think you see a zebra galloping down the railway line, but because this is so

unlikely you look again, focusing carefully and shielding your eyes against the light. We

can also use similar routines when there is something we want to pay special attention

to, or the possibility of something especially interesting. Walking in bear country you

check  each  suspicious  movement  of  large  bushes.  When  you  begin  to  suspect  that

someone is lying to you, you pay more careful attention to their face and their intonation.

Other  connections  exploit  mechanisms  of  attention  without  being  prompted  by  the

unexpectedness  of  an  outcome.  Some  of  these,  which  are  labeled  "overt"  in  Mole

(2016), are a matter of explicit orientation of body or eyes. When you hear a noise in a
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certain direction you look that way. Although in Mole's terminology the attention is overt,

it is worth noting that it is governed by unlearned innate mechanisms. Others, revealed

by recent cognitive/perceptual psychology, are covert, in that they result from a delicate

interplay  between  the  content  of  levels  of  perceptual  processing  and  the  resources

allocated to further processing. For example, Kravitz & Behrman constructed situations in

which subjects identified a briefly presented upper case letter on a screen more often

when their perception was primed with a prior very brief presentation of the same letter

in a related area of the screen, but in lower case.17 Here a learned perceptual awareness

is sensitive to something that would not otherwise be seen, by directing visual resources

to it in terms of what is itself an only partially processed stimulus.

Change blindness gives an interesting variety of cases where attention and interest direct

perception. People routinely do not perceive "obvious" features of their environment —

gorillas crossing basketball courts, changes in colour, the substitution of one person for

another, motorcycles directly in their path — when their perception is directed at tracking

other things and events.18 Consider what happens when someone is blind to a feature of

their  environment  that  is  obvious to  someone else.  The  other  person needs only  to

mention that feature, or to ask a simple question, and resources are redirected so that it

suddenly becomes obvious to the first person also.

There are two aspects to the way we respond to unexpected appearances. The first is, as

just mentioned, to tune our perceptual mechanisms to get, as it were, a second opinion.

The other  is  to  repeat  the original  perceptual  act.  We look,  turn  away,  and then in

17 Kravitz & Behrmann (2011)
18 Chabris and Simons 2011)
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surprise look again. We do this not just when something appears intrinsically implausible,

but when one perception does not cohere with another. This aspect operates even in

infants, who stare for longer at events that do not cohere with what they have previously

observed.19 We  also  follow-up  one  act  of  perception  with  another  using  a  different

modality. If we feel a raindrop on the head we hold out a palm to see if its greater

sensitivity detects anything. If we hear a crash on the left we turn our eyes and head in

that  direction.  Both  repeated  acts  and  successive  acts  usually  give  information  that

checks or complements one another.

So there are two ways in which perception is a particularly reliable source. Both exploit

the fact that in perception some environmental events causally produce a change in a

person's mind. (a) we can tune — adjust, focus — perceptual channels to make them fit

the environment. (b) we can repeat and vary acts of perception to check or confirm what

we seem to have learned. These are all  connected by being results of our actions to

modify the details of the causal chain from event to mind. They are all acting to know.

Even with actions that are not explicitly designed to yield information, we learn whether

they succeed or not, and thus get evidence whether actions like this can get results like

this, a simple part of the causal structure of things. There is a very fuzzy border between

acting to know and acting to accomplish and then incidentally learning something. You

can try making a vortex in the pot so that the poached egg does not disintegrate, and

this not only gives you a way of making tidy poached eggs but gives you evidence that

heat induced solidification can counter the effects of turbulence and centrifugal force.

Then you can vary the recipe in  many ways,  using different implements or  different

19 Ballargeon and Spelke (1985)
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temperatures or different rotations, and note which ones work. You may do this either to

learn how best to poach eggs or to learn about their integrity under various conditions20.

In a final class of actions directed at knowledge a person influences her own psychology.

This can consist simply in making herself pay attention, concentrate hard, or focus on the

contents of a difficult book. Mathematicians sometimes take suitable drugs to enhance

their  creativity  and  their  ability  to  see  complex  proofs.  (Strong  coffee  will  do,  but

amphetamines are not unknown for this purpose.) Yet another class consists of choosing

suitable sources of information. You go to the best experts, sometimes consulting experts

about which other experts to consult.  You employ spies, sometimes training them in

specific ways. All of these have an obvious experiment-like quality. They all exploit the

advantages of sensitive evidence, in particular the ways in which it can be modified and

fine-tuned.

evidence, knowledge, agency

My central theme is that when evidence is based on and related to "acting to know"

methods it has a number of advantages, which I aim to describe. One might wonder

what action has to do with this, since after all a person might wander by accident into a

laboratory while an experiment is being conducted, or read a journal article about it, and

get  important  evidence  although  she  is  not  herself  acting  in  order  to  know.  Is  the

connection with deliberate action essential? One might also wonder what the advantages

are meant to be. Good evidence surely leads often to true belief, but we can get true

beliefs without making data, just by analysing it. And how is evidence related to truth

20 This theme was suggested to me by Catherine Elgin.
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anyway? There is a connection between these questions.  

Elaborate the example of dropping a pebble into a well. You are at the top of a chasm

and you want to know how deep it is and whether there is water at the bottom. You

notice a pebble moved by the wind roll over the edge, and you realize that it is just the

right size and probable weight to bounce off the ledges on the way down and land with

an impact you will be able to hear. So you pay attention to it as it falls and eventually

you hear a plunk, telling you that there is water down there. And the time of the echo

tells you roughly how deep it is. This is sharp observation rather than experiment. You

noticed and then watched and then reasoned. 

But note two points. First, you have to know what to look and listen for, what to attend to

and how to respond to what you pick up. These are actions and you are interacting with

what interests you in a way that is  shaped by the facts of  interest.21 The analog of

experimental apparatus is your own capacity to attend and interpret, which you choose

to bring to the situation. Second, there is a price to pay for your limited control of the

situation. If the chasm had a different shape or if it was deeper that pebble would not

have done the job. So you would have been stymied if  things had been just a little

different. 

All the same, you did learn how deep it was and what was at the bottom. What you

ended up with was knowledge. A sign of this is that if there been no water you would not

have  thought  there  was.  So  in  nearby  but  waterless  situations  you  would  not  have

21 In a loosely similar way mathematical beliefs are shaped by mathematical facts, whose truth is required 
for the mental processes that lead to the beliefs to work. I suspect that this is one reason that naïve 
people talk of mathematical intuition and think of it as somewhat like perception.
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acquired a false belief. And if you had followed generally the same strategy in slightly

different circumstances (longer delay, softer splosh) and got the same answer it would

have  been  because  that  answer  was  right.  Your  conclusion  has  the  character  that

knowledge  is  taken  to  have  in  contemporary  epistemology,  consisting  in  true  belief

acquired or held for reasons that are linked to the reasons why it is true. Later, I shall

have to engage with some of the competing ways of making this rough characterization

more precise.   

Contrast this with the case in which you deliberately choose a pebble of just the right size

and weight to be most likely to give the information you want, and drop it down the

chasm. Then you would be more likely to succeed if the chasm were deeper or differently

shaped.  For  you  would  have  chosen  the  right  pebble  to  do  the  job  under  these

circumstances. And when you did succeed you would have acquired knowledge, just as in

the original case where you were not deliberately choosing and dropping the pebble. So

this is a way of acquiring knowledge that will work in a wider range of situations. But it is

more broadly reliable in the deliberate choice version than in the passive observation

version. So the result is also like knowledge except more so. We could say that it is

better knowledge, or more robust.22 Or we could use a rather restrictive conception of

knowledge so  that  the  active  version  counts  as  knowledge and the  passive  version,

contrary to the informal labels we are likely to apply to it, does not.

This  is  the  answer  to  the  first  question.  Acting  to  know  results  in  more  or  better

knowledge  than  reasoning  from  passively  obtained  observation.  This  theme  will  be

22 Speaking of better and worse knowledge is not unprecedented. Of course there are suggestions in 
ancient philosophy but see also Hetherington (2002).
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elaborated. As for the second question, we can see the beginning of an answer. The

method of listening for how long the pebble takes to get to the bottom and what sound it

makes when it arrives is a good one, assuming that it results in knowledge. And the

method of planning which pebble to use and how to direct it is an even better one,

assuming  that  it  results  in  knowledge  in  a  greater  variety  of  circumstances.  Good

strategies of investigation are those which lead to knowledge; even better strategies lead

to more and more secure knowledge. We choose norms of  inquiry not because they

satisfy abstract criteria of rationality but because they work as our most effective current

methods of learning. In these matters the way things actually are and how they might

have been play a large role, even if the researchers in question are not aware of these

facts. So there is a chance of epistemic failure even when one is proceeding perfectly

reasonably and intelligently. One just has to be wrong in certain fatal ways.23 

One instance of this is particularly important for the present project. Experimentation as

currently practised relies profoundly on statistical analysis and statistical inference. The

guidelines for doing this correctly would not have been familiar even 200 years ago.

They are still being honed and developed, and there are several opposed schools which

differ  in  important  ways.  So  a  basic  aspect  of  experimental  method  is  still  under

construction. It is not as if the reflective common sense of knowledgeable and intelligent

people tells us how to do research. Not only do we approach questions of method in the

light of what we have accomplished and failed at with previous methods, we have to

23 In this respect the project resembles classic suggestions in Alvin Goldman (1988). See also Elgin (2008).
The  concept  of  probability  is  interesting  in  this  connection.  Norm-based  accounts  of  evidence  in
philosophy and statistics usually depend heavily on the probability of evidence given hypotheses (its
likelihood). The relevant probability is nearly always either the researcher's subjective degree belief or
their estimate of objective frequencies. The actual frequencies or the tendencies of systems to produce
them are rarely involved. So the main traditions here are typically norm-based rather than knowledge-
imitating. But it does depend on one's attitude to probability.
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struggle to discern accomplishment and failure.24 This is so if we accept that it is very

often harder to know what one knows about a topic than it is to know truths concerning

the topic. Knowing that one knows is typically harder than knowing.25 As a result, the

material for reflection on method is typically rarer and more uncertain than the results of

method. This is so when we are discussing experiment: basic aspects of experimentation

can only be settled by reflection on the success or failure of particular experiments.    

24 The introduction to Williamson (2000) is relevant here. Morton (2012c) and Morton (2013) argue for a 
thoroughgoing symmetry between knowledge and accomplishment. Morton (2014a) makes the link with 
experiment.

25 Williamson 2000 ch 5 and appendix 2
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chapter 2:  experiments as causal processes

The experiments that provide evidence are real physical processes, and the information

they provide is made possible by their causal structures.26 Very often the information that

they give itself concerns causal structure, a collection of linked causal relations between

events or physical quantities. One question that this chapter begins to address is how the

causal structure within an experiment gives information about its target. This chapter

begins to sharpen a picture of the particular kind of evidence that scientific experiments,

and their everyday analogues and precursors, provide. The first task is to be explicit

about experiments as causal processes.  

cause, counterfactuals, evidence 

The account of experiment and of evidence generally in this book is thoroughly causal. I

take  this  label  in  a  very  general  way,  though,  so  that  it  includes  counterfactual

(subjunctive)  conditionals  and a  wide  variety  of  causal  relations.  In  chapter  5  I  will

discuss how evidence can distinguish between these various relations. But a description

of experiments in terms of counterfactuals will give a sense of how we can connect their

structure with the character of their evidence.

We are interested two incompatible hypothesis, H1 and H2. (Both might be false, but only

one can be true.) There is possible observable evidence ei (i ε{1, 2}) relevant to the

choice between them in that if  H1 were true e1 would be observed under normal or

frequent background conditions, and if H2 were true e2 would be observed. Just observing

26 Thought experiments are another matter, but I am not going to discuss them.
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e1 or e2 will not tell us much. Both hypotheses may be false in the actual world and e i

true  there,  although  the  nearest  world  in  which  either  holds  may  be  one  with  the

corresponding observation. (If a civilization on Mars had built canals, we would observe

them from Earth; if a civilization on Mars had refrained from building canals, we would

observe no canals from Earth; we observe no canals from earth; therefore there was a

non-canal-building civilization on Mars? A lot of sophistication has gone into filling the

gap here.) So instead of tangling with all the competing complications and possibilities

we set up an experiment. We create a situation S, often involving a process producing e1

or e2 set off by a deliberate triggering action, where given S "if e1 then (if H1 or H2 then

H1)" and "if e2 then (if H1 or H2 then H2)" are true. I refer to these as reversal conditions.

We will see more of them. (All the conditionals I use will be subjunctive/counterfactual,

unless  otherwise  indicated.)  Then  when  e1 is  observed  we  can  conclude  not  the

impossibly  simple  H1 — science  is  not  that  trivial  — but  the  useful  and informative

information that H1 is true in a nearer world than any where H2 holds. (It is more nearly

true; it would take less of a variation, if any, on actuality to make it true; it would have

taken a smaller and later variation, if any, from the actual development of the universe to

produce it. These are obviously not all equivalent, but they will do for the moment.) The

effect of S is to reverse the dependence between the hypotheses and the evidence.

Measurements  are  very  simple  experiments  (see  below).  They  illustrate  reversal

principles and give some confidence that reversal is possible. If we spill a quantity of

mercury on the table its changes in size will not tell  us much about the atmospheric

pressure. There are too many possible influences. But if we surround the same quantity

with a carefully designed apparatus and calibrate it suitably it will  be a fairly reliable
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indicator of the pressure. Many of the irrelevant influences will have been excluded or

minimized. Each marking on the dial is a possible outcome corresponding to a possible

pressure,  and  the  physical  setup  has  transformed  "if  pressure  then  marking"  to  "if

designed and calibrated then (if marking then pressure)". It is because of this that it can

be informative.

We need pairs of conditionals we are comfortable with saying what would happen if an

experiment  were  carried  out  in  particular  conditions  to  compare  a  particular  pair  of

hypotheses. And we need them to say what would have resulted had the facts been one

way  rather  than  another.  I  suspect  that  the  ideal  tool  here  would  be  a  contrastive

counterfactual "if a1 occurred rather than a2 then c1 would occur rather than c2" with a

dedicated semantics in terms of differences between worlds that highlight the differences

between a1 and a2. Then there would be a clearer incommensurability between results of

different  experiments.  But  developing  this  would  risk  burying  the  message  in  the

machinery, so instead I shall use pairs of conventional Lewis/Stalnacker conditionals "if a1

then c1", "if a2 then c2", with emphasis on pairs "if t when H1 then e", "if t when H2 then

f".  (f  will  often be simply the negation of e, but sometimes it  will  be a more subtle

alternative to e.) "When H1(2)" alludes to an inevitable complication. Sometimes one of

the two hypotheses will be true and a law of nature. Then a naïve antecedent "if H…" is

problematic; H is true in many or all causally possible worlds. Also, often combined with

this, an alternative to H may be causally impossible; counterfactuals with this alternative

as antecedent are equally problematic. Though I shall rarely indicate this explicitly, I shall

treat  such  counterfactuals  as  if  they  were  bundles  or  enormous  conjunctions  of

conditionals stating what would happen in particular cases of the necessary or impossible
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hypotheses. ("If energy were not conserved…" may be of dubious intelligibility, but "if the

combined kinetic energy of the particles were e …" when it is in fact e' ≠ e, is a lot better

behaved.) 

Here  is  a  simple  argument  to  the  conclusion  that  experiments  as  described  in  this

chapter  lead  to  such  reversal  principles.  (Too  simple  perhaps.  Complications  in  a

moment.) Suppose that either H1 or H2 is true. Then when the experiment is performed

either e1 or e2 will result, but not both since they are incompatible. Now suppose that it is

e1 that happens. e2 will not occur. But if H2 had occurred e2 would have been observed, so

H2 is not true. So if exactly one of them is true it is H1. It remains possible that they are

both false, but at any rate we have that if one of them is true it is H1. Similarly on

observing e2 we can conclude that if one of them is true it is H2.

The fly in the ointment is knowing that the requirements for a reversal principle are met.

The history of science is full of experiments that were thought at the time to be crucial,

and establish which of two hypotheses were indicated. Even taking into account that the

aim here is not to determine which is true, holding in actuality, but which is true in a

situation nearer to actuality, there are many ways to be mistaken. One requirement is

that if a hypothesis is true the experiment give a particular outcome. We can very rarely

deduce a description of the outcome, from a statement of the hypothesis alone. So this

requirement  is  counterfactual:  if  H  were true…  .  But  there  are  many  unknown

counterfactual conditionals, and we often think one is true when it is not. A similar point

goes  for  knowing  that  the  outcomes  associated  with  the  two  hypotheses  are

incompatible. A form of both of these, which is so frequent as to be practically universal,
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occurs when the relevant outcomes cannot be observed in a finite time. The practically

universal form occurs most importantly when the evidence is statistical, and no single

experiment will definitively give answers. (Series of trials are discussed at several places

in later chapters. The very fact that different trials can give opposing indications shows

that there is a lot more to discuss.) An infinite series of trials or a sample consisting of

the whole population would be enough, but the central need for statistics comes because

these  are  practically  impossible.  Links  between  statistical  hypothesis  testing  and the

framework here are in chapter four. 

Another basic gap to fill  concerns ignorance and error about objective evidence, as a

result largely of our shaky grasp of which counterfactuals are true. Epistemic agents are

frequently wrong about the strength of their evidence, and regularly have more or less

evidence than they think they do. The phrase “on observing e2 we can conclude ...” above

could do with more explanation.

So the connection between experiment and objective or sensitive evidence is not yet

fitted to a lot of what we do when finding support for a hypothesis. But it is now clear

that there are links at a basic and general level, comparing hypotheses in terms of which

is true  under  a  greater  perturbation  of  however  things  actually  are.27  Honing  the

connection is a recurrent task in what follows.

informative processes

27 This is loosely related to what Woodward (2006) calls “sensitive causation”.
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An experimenter hopes to learn about a topic. She may well have a specific hypothesis in

mind, though purely exploratory experiments are far from unknown. So she contrives a

situation where a process, the "indicative process", occurs. She may have to set this

process going, or it may happen spontaneously. A trigger for it will often involve putting

the value of some quantity in a particular range. There is usually a range of anticipated

consequences  c1,...,  cn, of  the  process  — the  targets  — which  also  often  consist  in

quantities lying within ranges. The hope is that the consequence that actually results, for

this combination of factors, will feed an inference revealing something about the topic.

This  general  description  applies  to  many  interactions  probing  for  the  origins  of  a

phenomenon. There are standard rules for doing this, discussed in the next chapter. The

question now is how the familiar forms of experiment fit  the pattern of the previous

section. The familiar routines of experiment can be spelled out in diagrams as follows.  

The  diagram  includes  a  "transducer"  step  where  the  outcomes  of  a  number  of

occurrences of the indicative process are transformed into a single output. This is to

accommodate the inescapable fact that the data can usually only be interpreted in bulk.

Many individual items will be misleading or irrelevant in isolation so that it is data sets

rather than data items that constitute evidence.28 Then a standard causal  pattern of

experiments can be represented as follows.

28 A classic systematization of this familiar fact, making it clear that it applies beyond cases where the
interpretation is explicitly statistical, is Woodward and Bogan (1988). Also Woodward (2011).



44

The black arrows represent causal  processes that  actually  occur,  whether or  not  the

experimenter has anticipated them. The blue arrows represent thoughts and intentions of

the experimenter. They may contain mistakes or be based on false assumptions.  The

pattern can be summed up as design leading to a trigger leading to a process resulting in

targets whose information is consolidated prompting an analysis. Each of these six stages

has a standard content, as illustrated in the boxes. Call this the six box pattern, for want

of a better name.

Although the arrows are causal, the events on their left are rarely, perhaps never, the

only causes of the events on their right. And in particular there are nearly always other

causes that do not pass through the events on the left. If they have a large influence

then the final inference is muted or complicated. (The initial design usually requires them

to be minimized.) So ways of preventing outside influences are usually put in place. I

shall refer to all manner of preventions as "insulation". Insulation is typically selective: it

depends on what we want to be taking account of in the hypotheses we are comparing.

So it is a matter of planning at least as much as of physical operation. Building this into

the diagram we can impose a simple schema on all the boxes. One begins forming a

plan, then one carries it out, and then one analyzes the results. This gives us what I shall

call the three box model. The middle box, process, is importantly different from the other

two. It contains what actually happens, whether or not it is expected or understood. The

independence of what happens at this stage from the other two is important.
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The now simpler structure, still with quite a lot of detail is as follows:

The 

This

is  the

pattern of many classic experiments in the history of science, and of much contemporary

research. We are used to taking it as a source of reliable evidence. For a clue about why

such pattern might be the source of such as results return to the reversal conditions of

the previous section. These state that the evidence gives one hypothesis a preferential

status to the other, in terms of the remoteness of the situations where it is true. So why

might we expect the structure of an experiment to be correlated with evidence having

this power? 

It is tempting to think that the main factor must be the insulation. It allows some control

of what influences the process and its outcomes. But this cannot be more than a small

ingredient in many cases. Insulation is a crude measure; it obstructs whole categories of

influences. But we usually need to tune the influences to fit a particular hypothesis or

hypotheses. We might be interested in whether one virus in the absence of a particular

other is correlated with a symptom. Or more subtly whether radiation between one level
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and another, just slightly different, can induce a mutation. And in fact there do not seem

to be many examples among the classic experiments in the history of science where it is

insulation alone that makes the experiment work. A general way of putting the point is

that evidence supports or undermines hypotheses which have many logical forms, while

insulation can at most give a list of factors allowed and factors obstructed. This is also

the reason why the language of confounders is not very helpful.

We  do  control  what  factors  influence  indicative  processes.  And  we  can  do  this  in  a

structured way, often without realizing exactly what we are doing. One way we often do

it is by combining a fairly broad-spectrum insulation with a much more specific trigger.

We tune the trigger to provide the combination of factors that we want and we rely on

the insulation to ensure that a range of factors beyond this combination is not affecting

the results. There are many examples in science. One very clear one is Frances Arnold's

Nobel prize-winning work on the production of enzymes by directed evolution.29 Arnold

manufactured  organisms which  were  exposed to  conditions  leading  them to  produce

enzymes with desired properties, such as the synthesis of biofuels. In a preliminary stage

the organisms are created by a very deliberate evolutionary process. Then in the part of

the experiment that illustrates my point these deliberately construed agents are used to

trigger  a  chemical  process  which,  without  special  insulation  for  the  hypotheses  in

question, produces the intended targets. This process is shielded from outside influences

in standard ways which are not particularly discriminating. The result is experimental

evidence for, among other things, the complex hypothesis that there is an enzyme that

facilitates the reaction in question. Once one sees the pattern one can find numerous

other cases.

29 AAAS (2019)
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The  force  of  the  evidence,  to  the  extent  that  it  depends  on  whether  a  specific

combination of factors is responsible for the target achieved, depends on what actually

happens during the experiment. This can often reduce to a question of whether it would

have proceeded differently under various other conditions. Experimenters can therefore

be mistaken not simply about which hypothesis is true but about how well the result of

an  experiment  supports  one  hypothesis  over  another.  This  shapes  one's  picture  of

scientific rationality, but it also has an impact on practical issues of method. In the case I

have just described, for example, we have a two-stage experiment. First one produces

the organism in question, and it is necessary to confirm that the procedure will do this

reliably, and then one uses the organism to catalyze a chemical process, and for this it is

necessary to confirm that organisms producing this enzyme will facilitate the required

catalysis. But this second part of the experiment presupposes that the hypothesis in the

first part has been confirmed. A perfectly competent scientist might conduct the second

part of the experiment thinking wrongly that the first part had been a success. While this

might simply be a matter of bad luck, all the same the overall project would be a failure.

The result is that there can be conditions in the performance and surroundings of an

experiment that satisfy a reversal condition. Their effect is that an evidential event that

in other circumstances will be produced if one hypothesis rather than a rival is true will

under the specific experimental conditions only occur if one rather than the other holds.

An enzyme which would normally be produced by a biological process if  it exists but

which  could  also  be  produced  by  other  processes  is  under  the  conditions  of  an

experiment  only  possible  by  that  particular  process,  thus  giving  evidence  that  the
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process does occur. (“Only possible” meaning that this is what it requires except in really

exotic scenarios.) There is no guarantee that such conditions can always be found for a

pair of hypotheses. Our knowledge is in the hands of nature, but our ingenuity allows us

many ways of persuading nature to cooperate. Even when we can achieve it the reversal

is usually imperfect. If one hypothesis rather than the other is true then it is likely that

one  event  rather  than  its  contrast  will  be  produced,  and  given  that  one  has  been

produced when the other was conceivable its origins are likely to lie in the truth of the

one hypothesis rather than the other. These inevitable probabilistic weakenings are a

topic of chapter 4.

Sometimes the trigger is absence of an intervention, and then the insulation is important

for indicating what will happen in an unperturbed state, typically one that is rare in the

uncontrolled world. An example where nothing will  happen and the trigger is  a non-

trigger is given by Pasteur's experiment undermining the idea of spontaneous generation.

Boiled meat broth was left to cool under S-shaped tubes which allowed air but frustrated

spores, resulting in no worms, insects or whatever. The hypothesis that organic matter

left  alone  will  not  generate  animal  life  is  supported,  and  again  the  wide-spectrum

insulation allows a transition from what may be expected if the hypothesis is true to what

is suggested if this expectation is fulfilled. (Although one that makes a fair number of

assumptions and needs further evidence before it is at all conclusive.)

A tricky issue is the uniqueness of the articulation. Could we make two quite different

diagrams of the same experiment? I am not sure how to tackle this question, but one

obvious  concern  is  the  distinction  between  trigger  and  insulation.  What  on  one
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articulation  might  be  initiating  a  trigger  could  on  another  articulation  be  preventing

interference or drowning out of a causal factor that would occur anyway. The application

of  a  source  of  radioactivity  might  be  an  example.  Intuitively,  insulation  is  double

prevention: preventing unintended factors from preventing the trigger from having its

effects  or  from  their  being  detectable.  And  one  distinctive  of  prevention  is  that  it

presupposes a deeper cause whose operation it hinders, one that will operate in a wider

range of situations. (The depth of causes is discussed in chapter 5.)

experiments within experiments, measurement

Each of the three boxes can itself contain a whole experiment, itself dividable into parts.

Two frequent occasions for this are in preparation of materials and in measurement. It is

often  not  obvious  that  the  materials  for  an  experiment  are  as  it  requires.  Then  a

subsidiary  experiment  can  check.  It  can  be  as  simple  as  sampling  from  a  random

selection of candidate materials,  or itself  more like a whole insulation/trigger/process

experiment.  One  example,  from  Arnold’s  work  on  targeted  evolution,  has  been

mentioned. Similar procedures  are fairly common in biology. Another, also a Nobel-prize-

winning series of biological experiments, is Ohsumi’s work on autophagy, which involved

developing a yeast where processes of recycling used cellular materials proceed slowly

enough that they can be studied.30    

The resemblance between experimental apparatus and observational instruments is vivid

with microscopes. There we often cause changes in the object we are observing. A simple

30 Ohsumi and others 1992. Another important resemblance between experiment and measurement is the
need for statistical techniques to separate signal from noise (Bland and Altman (1996), Hawkins (2014)).
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case is the use of dyes with optical microscopes in biology; a suitable stain brings out the

features of interest.31 The changes in the object may not be trivial, and in fact we often

have to take care not to destroy it.32) The line between observation and measurement is

also  pretty  vague.  (Is  a  theodolite  a  kind  of  telescope  or  a  kind  of  protractor?)  So

sometimes it the purposes of a procedure are more important than in its structure in

classifying it as experiment, observation, or measurement. Many varied enterprises of

changing  things  in  order  to  know more  about  them use  the  three  box  patterns  of

causation, for they are effective ways of making forceful evidence appear.  

(Values of fundamental constants are routinely obtained in this way, even when there are

conflicting  theories  about  their  values  and  how  the  apparatus  works  (Ekstrom  and

Wineland 1980).)

and outside science 

These strategies for sharpening experimental evidence are generally similar to ways that

we get evidence in everyday life to focus more precisely. Two examples illustrate this,

and hint at what may be special about the form they take in science.

First consider selective attention, where one ignores information that is not elicited by a

particular  controlled  action.  A  blind  person  is  pretty  good  at  navigating  through  a

complex environment guided by the echoes of ambient noises. There are limits to how

well this works, though. So instead very often this person taps on the ground with a cane

and guides herself  by the direction and timing of  the echoes.  She knows where the

sounds come from and which ones are echoes of which, and this gives her a less fallible

31 Alirio Rosales showed me the importance of this simple fact.
32 There  are  fewer  cases  with  telescopes  in  astronomy than  with  microscopes  in  biology,  for  obvious

reasons. But the point is not completely inapplicable: there have been observations of the moon which
involve shining lasers at it from earth.
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grasp of where obstacles are. She has gone from "if there is a wall there then there will

be an echo from this direction sounding like that" to "if there is an echo sounding like

that from this direction then most likely there is a wall there". But to do this she has to

ignore the competing flurry of echo-information from other sources. (Note that this is

also an example of the common ground between observation and experiment.33)

Next consider informal randomization. A person is curious whether a switch controls a

distant light. It would not be the only switch connected to the light, and it is possible that

the power supply is intermittent, affecting both the light and the unreliable switch. So he

flips the switch in an "unnatural" way, perhaps beginning Paradise Lost in Morse code. If

the light then signals  that  very sequence back to him, even with a small  degree of

fuzziness, he can be pretty sure that the pattern of switch flipping lies behind the pattern

of illumination. Again there is a reversal. He can go from "the way the switch is flipped is

a possible cause of the on-and-off of the light" to "the overwhelmingly most likely cause

of the light's turning on and off is the action of  the switch".  (There is also a causal

dimension here, which I return to in chapter 5.)  

For a third example consider everyday psychological attribution. As I noted in the first

chapter, we often do this by watching for people's reactions to our initiatives. I suggested

that  this  was  one source  of  our  acuteness  about  one another's  minds.  The reversal

aspect can be found here too, but it is a different feature that I want to emphasize. We

can base  our  thoughts  about others on their  facial  expressions,  body language,  and

general  demeanour,  which  can  have  many  sources  besides  their  reactions  to  our

33 Another way that observation fades into experiment, especially if we see the continuities between 
everyday perception and instrument-mediated scientific observation (Brown 1987).
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probings.  We can also  focus  on  what  they  say,  and  in  particular  on  their  choice  of

expression from a limited range in response to a demanding instruction. "Would you

describe  your  attitude  as  resentful  or  angry?"  "Rate  the  candidate's  suitability  for

graduate work on the following five-point scale." This allows us to choose between more

precise  alternatives.  There  are  two  advantages.  The  first  is  the  smaller  number  of

possible reasons why one of these specific alternatives would be true, at any rate given

background assumptions and attitudes. This makes reversal easier, and thus evidence

more definite. The second advantage is just the more specific nature of the hypotheses.

Since they are attributions of attitudes to particular propositions each of them can be

contrasted  with  yet  further  possibilities  and  these  afford  yet  further  possible

confirmations or tests. Thus in the long run we have a better chance of winnowing out an

accurate picture of a person's states of mind.

Three things — precision of hypothesis, fruitfulness, and force of evidence that may be

gained from a successful experiment — go together in these everyday cases. They are

generally associated, and this has broad epistemic consequences. That is the topic of the

final section of this chapter.

forks and circles   

Many  general  theories  contain  undefined  parameters  which  take  different  values  in

different applications. The downward acceleration of a falling body depends on its mass

and that of the planet it is falling towards. Weighing Earth or Mars would be tricky but

measuring acceleration is somewhat easier, so we can estimate these values in familiar
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ways. One standard technique is to try out successively finer pairs of values, zeroing in

on  the  final  estimate.  We  could  first  compare  the  hypothesis  that  bodies  on  earth

descend at (roughly) 10m/s2 against the hypothesis of 5m/s2, then 9.9 against 7, and so

on, getting nearer and nearer to 9.80665. (With this well behind us we can compare the

values at different points on the Earth's surface.)  Values of fundamental constants are

routinely obtained in this way, even when there are conflicting theories about their values

and how the apparatus works.34 The procedure here is midway between experiment and

measurement.

The parameter-fixing example illustrates what can be done. We know that the equation

giving acceleration in terms of mass is essential to explaining the data about a particular

falling body because when we vary the values in this equation we no longer connect with

the data. If they had been different, as they could have been on a different planet or with

a slightly different history on this one, the events actually produced in the experiment

would not have occurred. More generally, an item of evidence supports a component of a

larger theory when that item would not have occurred if some variant rather than that

component had been true. Conditionals like this rarely hold except under experimental

conditions.

The  quantitative  emphasis  in  scientific  theory  facilitates  this  technique,  by  giving

opportunities  for  finely  differentiated  hypotheses  and  correspondingly  precise

measurements. Using varied propositions as objects of mental states does something

similar in everyday thinking about mind.35 The technique is generally reversal friendly

34 Ekstrom and Wineland (1980).
35 Numbers and propositions are not the only two possibilities. Any domain with a finely differentiated 

structure would do.
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and can boost evidential  support.  The quantitative focus and the empirical  focus are

symbiotic. But there is a link here with another desirable feature of theories.

Often  different  parts  of  a  theory  do  the  work  in  explaining  different  classes  of

phenomena.  And theories  quite  often  have redundant  parts  that,  intuitively,  are  not

earning their epistemic keep. It would be desirable to target evidence so that it is clearer

which parts of a theory it applies to. But this is notoriously difficult with accounts of

evidence centred on explanatory force. Crudely, a bloated theory explains as much as it

is  leaner  functional  parts.36 But  an  account  of  experimental  evidence  based  on  the

evidence-providing events that would occur if one hypothesis rather than another were

true opens up more possibilities. 

The possibility of separating evidence for different parts of a theory is never guaranteed.

It depends on whether there are experiments which will in fact have suitable outcomes,

and thus on the causal facts as they are. This goes some way to explaining the conflict

between intuition and doctrine. Since we can isolate parts of many quantitative theories

in experimental science in terms of their relevance to particular bodies of data, we think

of  this  as  a  feature  of  theories,  and  of  confirmation  in  general.  Moreover  it  is  a

methodologically nice property for theories to have. But attempts to find a feature of

theories in general that accounts for this property fail, because there is no such feature.

It depends on what the physical facts are and what experiments we are able to perform. 

36 This is the issue which Glymour's bootstrap method, a prescient rebellion against the prevailing epistemic
holism of its day, is meant to address. Glymour (1980), Christensen (1983).



55

The  capacity  to  combine  as  well  as  divide  theories  is  important.  It  provides  some

protection against dangers of circularity. Constructing an experiment usually relies on

previous theories, which may be well confirmed standard doctrine or improvised rough

modelling.  When  these  theories  are  false  the  results  of  the  experiment  may  be

misleading. For a trivial example suppose that we assume that the material of a metre

stick does not expand as it becomes hotter. Then we experimentally heat a range of

substances to see how they are affected by temperature, measuring them with metre

sticks. If our assumption about the metre stick is wrong then the conclusions about these

substances are likely to be erroneous. A slight error in the assumption could lead to large

errors in the conclusions. There is a practical problem in experimental design here, linked

to an abstract sceptical worry about the significance of evidence.37

But  a  standard  experimental  technique  gets  around  this  problem.  We  can  base

experiments on different theories. We can measure by purely optical measurements how

objects expand and change their shapes when they are heated so that nothing like the

yardstick  is  involved.  Or  we  can  use  different  materials  with  the  standard  ways  of

measuring. The result is more convincing the stronger the evidence for the theory we are

now using, and so the force of this point about joining theories together depends on the

previous point about taking them apart. And we can do it only when nature lets us. But

the  result  is  progress.  When  true  assumptions  are  used  to  construct  and  interpret

experiments where the phenomenon produced are in fact the results of the experimental

processes then well confirmed theories will often be true. That broad generalization relies

37 The worry is most familiar to epistemologists as a point about disconfirmation, in the guise of Quine's use
of Duhem's observation that when evidence seems to undermine a theory we can usually instead take it
as  undermining  some  ancillary  assumption.  If  this  point  is  combined  with  a  resistance  to  allowing
evidence to target parts of complex theories, then the result is a widespread indeterminacy. We seem
able to react to any evidence in an enormous number of ways without incoherence.
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on our having enough true alternatives to a false theory, and of  course we have no

guarantee about the truth value of any of them. But as long as we can combine parts of

larger theories into suitable experiment-supporting complexes and as long as we vary our

replications of experiments, they will buffer us against self-confirming circularity. When

ingenuity  is  there  and  the  facts  are  friendly,  that  is.  (Issues  about  singularity  and

differential confirmation of parts of theories will return in the final chapter,7.)

The characteristically experimental force of evidence is thus knowledge-like in its lack of

iteration: having strong evidence for a hypothesis does not mean having strong evidence

that one's evidence is strong. The facts about the subject matter and the facts about

one's  relation  to  it  are  independent.  A  suitably  structured  experiment  comparing  a

hypothesis to a suitable alternative it can result in evidence that occurs only in situations

like those where it is true. Moreover this evidence will often discriminate between large

theories  and  their  components,  and  guide  further  experiments,  leading  to  an

accumulating body of knowledge. Those are its virtues, when we are lucky enough to

have it. 
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chapter 3: the rules of experiment and the success of inquiry 

norms of experiment

There are norms of experimentation, criteria for a well-conducted experiment. These vary

a little from one discipline to another, but there is a common core which is essential to

scientific  practice,  and which researchers  violate  at  their  peril.  The more closely the

production of  data and its  analysis  conforms to them, the better the evidence for  a

hypothesis is regularly taken to be. This is the first of two chapters about standards of

the force of evidence internal to science, discussing them from an epistemic point of

view.

The message for epistemologists in this chapter is that the reasons why the norms of

experimentation  are  generally  effective  suggest  general  strategies  for  acquiring

knowledge, and the way they are generally formulated makes it  harder to see some

interesting issues that arise from them. The message for philosophers of science is that

these norms are not entirely unproblematic, and raise interesting issues, about causation

and its discovery and also about the interpretation of a hypothesis-as-confirmed.

The  existence  and  near  universal  acceptance  of  these  norms  raises  a  number  of

questions. They include:

In what sense is evidence better or stronger if it conforms to the norms?

What is their rationale: adherence to them brings what advantages or forestalls

what dangers?



58

How embedded in  a  particular  scientific  tradition  are  they? What  precedents  or

analogues are there in non-and pre-scientific practice?

A naive preliminary question is why we need such norms at all, beyond basic principles of

honest data record keeping and enough statistics to support simple inductive reasoning.

Suppose that we are investigating the heights of people in Vancouver in 2019. We take a

sample and measure them, and then accept or reject a claim about the average height of

all  Vancouverites.  Questions  about  how  to  get  to  that  acceptance  or  rejection  are

deferred until the next chapter. (They are pretty familiar questions, but I put a twist on

them.) We do this without control groups, randomization, and the rest. What could be

wrong about the result? It seems to be the best we can get as a stab at the average

height of people in Vancouver (and similarly for other aspects of Vancouver heights).

After all, factors that affect the sample are likely to affect the larger population, and if

the sample is not typical of human heights in general, or people in affluent countries in

the early twenty-first century, then that particular population, Vancouverites, is not going

to be typical either.

There are two things wrong with this reasoning. The first is a matter of suitability. Is a

sample going to tell us anything about this population? (Or about the heights of humans

in  general.)?  Suppose  that  people  get  to  live  in  Vancouver  as  the  result  of  some

completely random process. Permission to live there might be the prize in a lottery won

by some 600,000 people. And that is the only way someone gets to live there. The result

is like an accidental generalization from 1960s epistemology (coins in someone's pocket,

New Jersey school board presidents). Or consider two variables defined as functions of



59

completely  random variables  (results  of  two lotteries,  perhaps),  which  for  no  reason

happen largely to coincide. In such cases the sample will tell us nothing about the wider

population (either those who happen to live in the city at the moment or the long-term

population). It is not the kind of fact that can be projected.38 

(It  is  customary  to  contrast  two  categories  of  inference.  On  the  one  hand  there  is

inference to a hypothesis which is noncommittal about whether some of the correlated

terms cause others or whether some of the correlations are effects of common causes.

And on the other hand there is inference to hypotheses about which factors are causes of

which others. This second kind is standardly called "causal inference". However there is a

sense in which all inference is causal inference. If there is no causal background at all for

a generalization then we can only come to know it by knowing each of its instances

separately.  So  when  we  make  a  standard  inference  to  a  generalization  we  are

presupposing that it  is  backed up by some systematic  causal  reasons. These can be

stronger or weaker, and there are lots of varieties, tending to pure coincidence at one

extreme and direct causal connection at the other, from an easily-perturbed exception-

prone  patterned  case-by-case  to  a  causally  and  counterfactually  robust  fundamental

law.39 I have more to say about this later (chapter five). But one is always reasoning to a

conclusion about causal organization.)

The second problem with the reasoning is a matter of intended application. Contrast two

uses for the eventual conclusion about the whole Vancouver population. Suppose that we

are  going  to  use  it  to  order  clothes  that  will  outfit  everyone  in  town  for  a  special

38 A curious feature is that most patterns are like this, although examples do not occur readily to us. 
(Similar to the surprising fact that most real numbers are irrational, though most of us can only name a 
few.)

39 Johnson (1991), Sober (2001)
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occasion. Then we will want to know (among other things) the average height of these

particular people as they are now. But suppose on the other hand that we are going to

use it to design new buses which will have a service life of thirty years. Then we will want

to  know the  average  height  to  expect  of  people  subject  to  the  conditions  found  in

Vancouver. It is easy to think of further uses and corresponding reference classes. The

important point is that the first class projects from the sample to a set of actual people,

while  the  second  class  projects  to  potential  people  and  actual  people  as  they  may

develop.

These two issues can coincide. Suppose for example that we are studying animals that

do  not  form a  biological  kind.  They  are  no  species  or  subspecies,  but  are  grouped

together in everyday language and thinking. ("Bugs" as including animals as different as

spiders and grasshoppers, "geese" as including some kinds of ducks.) Then samples from

the commonsense kind will give very limited information about the disparate biological

kinds,  and  samples  confined  to  one  of  these  biological  kinds  may  not  answer  the

questions we are asking about the whole intuitive kind. (If we want to know mechanisms

of reproduction we should stick to the biology; if we want to know how to raise and

manage them our questions may be best addressed to the intuitive kind.) There will be a

link between the particular generalizations aimed at and the purposes we want them for

which  will  shape  the  appropriate  causal  origins  of  the  samples  and  corresponding

populations  we  take  account  of.  So  inappropriate  sampling,  inappropriate  for  the

purpose,  should  be avoided.  This  is  often  described in  terms of  a vague rhetoric  of

avoiding  “confounders”,  unwanted  factors  that  can obscure  the  conclusion.  But  what

needs to be avoided will vary depending on the full conclusion at stake. Much of this
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chapter  takes the  standard  rhetoric  and specifies  the  influences in  more  informative

ways, more sensitive to the causal origins intended..

One reason for the language of confounders is thinking that the aim is simply to achieve

truth. But as many writers have pointed out we want not only to believe truths but to

avoid falsehoods.40 And the concern could be acquiring a true belief for oneself, acquiring

a true belief for a community of researchers in the field, discerning a promising line of

inquiry for oneself or a larger group, or coming to know why a phenomenon occurs. It is

not at all obvious that all of these are promoted by the same measures and the same

understanding  of  evidential  force.  Neither  is  it  obvious  that  different  stages  of

investigation — such as spotting promising topics and hypotheses, deciding between rival

promising possibilities, and replicating apparently successful experiments — call for the

same  safeguards.  For  the  rest  of  this  chapter  I  shall  go  through  the  standard

interference-protection norms of experimentation, suggesting which kinds of protection

against which kinds of  interference and experimental  procedure are helpful  for which

purposes.

First,  more about encouraging truth and avoiding falsehood.  There are two standard

frameworks, one more common among epistemologists and one more common among

statisticians  and  scientists.  The  epistemologists  contrast  error  avoidance,  doing  what

works best to make it unlikely that one ends up with a false conclusion, with ignorance

avoidance, doing what works best to make it unlikely that one ends up without a true

(and useful or informative) conclusion. Avoiding error with no concern about relief from

40 Perhaps the first person to point this out was William James. See page 30 of James (1897). More recent 
expositions are chapter 7 of Levi (1974), and more accessibly chapter 1 of Goldman (1988).
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ignorance is trivial: one accepts none but the most certain conclusions. But this is no way

to understand anything difficult. Avoiding ignorance with no concern about error is also in

a way trivial: one accepts conclusions as soon as they provide some sort of hold on the

phenomena, with little regard to how they fit together or whether some of them may be

wrong. The result would be that true accounts of the topic hide scattered among the

varied and ill sorted parts of the resulting theories. In statistics much the same work is

done by the distinction between type I and type II errors. Type I is haste, changing one's

view too readily, resulting in a false belief. Type II is over-conservatism, sticking with a

prior account even when this would be to retain falsity (so missing an opportunity for

truth).  The  presupposition  is  that  there  are  two  hypotheses,  the  null  or  default

hypothesis  and  the  alternative  or  speculative  hypothesis,  and  there  is  a  source  of

probabilities for the data that will guide the choice of hypothesis. It is also assumed that

one is choosing between on the one hand retaining the null, which can sometimes be so

vacuous as forming no explanation of the data at all, or on the other hand abandoning it

to accept the substantive alternative hypothesis.

Though the general idea behind both the epistemological and the statistical version is the

same there are significant differences between them. The standard statistical version is

thoroughly probabilistic, and gets its probabilities from the two hypotheses concerned, as

described in the next chapter. The crucial probabilities are those of wrongly retaining the

null hypothesis and of wrongly accepting the alternative; they represent the chances of

making  these  mistakes with  respect  to  that  particular  pair  of  hypotheses given that

particular  evidence.  These  are  probabilities  as  signs  of  justified  confidence.  On  the

epistemic version the concern is with the possibilities for truth or falsity in using the
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method that that particular belief at that moment. This can have a broad focus on the

chance of truth or falsity in the longer run as in many analyses of justified belief, or a

narrower focus on the range of possible situations where the acquisition would have been

successful, as in most analyses of knowledge. My emphasis will be on the latter. The

probabilities are signs of  reliability.  They indicate how strong a tendency to truth or

falsehood an epistemic practice has. This gives them a favour of causal possibility. The

causal significance of the probabilities involved will turn out to be a mark of differences

between norms of experimentation. 

Thinking  statistically  about  probability  in  connection  with  someone's  coming  to  a

conclusion, then, directs attention to the probability of truth among other conclusions

obtained  "in  the  same  way".  Thinking  epistemically  directs  attention  instead  to  the

possibility of truth or falsity of that very conclusion for that person then. Both of these

combinations — probability with method and possibility with situation — are important.

We have cause for worry if either is attributed in a way that does not serve its purpose in

the  method where it is used. But they are different, and combining them is a delicate

matter. I do not tackle this until the next chapter. My concern now is with the occasion-

to-occasion possibilities of  truth and falsehood for conclusions that respect or violate

individual standard norms.  

ten commandments for researchers

There are standard rules or norms for researchers. Their origins, often reflected in the

terminology,  are  largely  in  agricultural  and medical  research,  although they are now
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spreading  throughout  science,  even  into  particle  physics.  They  come  with  standard

rationales, and it is these that need attention here. Each in turn.

(1) plan  experiments  before they are carried out,  including choosing the size of  the

sample and the way it is selected, and the way that the data is going to be analysed. The

point of this that there may be no profit from the experiment unless it has a particular

evidential force, usually requiring a particular sample size, method of analysis, and so on.

It  is  a  waste  of  effort  to  do  the  work  unless  the  results  are  worth  having.  This

presupposes that the force of the results depends not just on the content of the evidence

but  also  the  way  in  which  it  was  produced.  It  depends  also  on  the  purpose  of  the

experiment,  exploration,  confirmation,  replication,  or  whatever.  One  basic  and  often

neglected task is to be explicit about this and plan accordingly.

A contentious issue about planning concerns advance decisions about when to end a trial.

The majority of statisticians warn against deciding only during an experiment the point

when enough evidence has been collected. The reasons are clear enough: if we decide to

call a coin biased the moment that there are many more heads than tails or vice versa,

and to continue the experiment until that point is reached, then we will almost always

conclude that a coin is biased, even when it is not. Better, according to orthodoxy, to

decide in advance how many trials to make and stop at that point. Bayesians sometimes

disagree with this advice, and the technique of sequential testing provides ways around it

in  some  circumstances.  So  there  is  a  connection  with  issues  about  the  sources  of

probability. But on nearly all philosophical accounts of probability there are probability
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assignments one is confident in making and those that are more conjectural.41 If the

point of the experiment is to uncover possibilities that are worth further investigation

then it would be defensible to use somewhat conjectural probabilities, perhaps derived

from a possible but not inevitable model of the situation, and to cease experimenting

when an interesting pattern emerges. (The coin lands heads five times in a row. It is

reasonable to suspect it  might be biased, though this  is a long way from conclusive

evidence.) On the other hand if the point is to make a more definite decision about the

truth of a hypothesis then this policy would very often be a bad one.

The  relatively  uncontentious  distinction  between  suggesting  research  and  accepting

hypotheses illustrates a theme of this chapter. Scientists usually discuss method only in

terms of acceptance and rejection (themselves ambiguous concepts, as we shall see). In

practice,  they  perform  exploratory  experiments  and  form  as  many  conjectures  and

intentions for further experimentation as they do experiments aimed at contributing to a

decision about truth. But this is kept under wraps, although if I am right it is relevant to

some controversies about the meaning of the norms. So within the analysis there is a

plea: be more upfront about your real intentions.

(2) Record as much as you can about the details of the experiment, well beyond the data

that is analysed. 

41 Bayesianism comes in two flavours. For subjective Bayesians probabilities are simply degrees of belief, 
and are thoroughly relative to the believer. Most philosophical Bayesians take this line. For objective 
Bayesians the source of the probabilities matters, and a lot of thinking goes into finding non-question-
begging ways of determining them for probabilities of data and if need be prior probabilities of 
hypotheses. Most statistical Bayesians take this line.
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It is worth distinguishing two main purposes among the many for this norm. First, it is

inevitably frequent that an experiment supports a false hypothesis. The obvious reason is

the statistical nature of much evidence. If something is true only of a small subclass of a

population  it  is  usually  possible  that  a  sample  drawn  from  the  population  has

disproportionately  many  from  that  subclass.  And  the  experiment  may  have  been

conducted under conditions that are less general than is realized. When this is so literally

replicating the experiment, re-doing it as near as possible in the original way, will often

come  up  with  a  contrary  result.  Surprisingly  many  experiments  do  not  replicate.42

[Footnote.] But when an attempt at a literal replication fails it may be because of some

detail of the original experiment. The source of experimental animals or materials may be

different;  the  subjects  may have been given different  instructions.  These  things are

rarely given in enough detail in published reports of experiments to enable a really literal

replication. So the experimenters' notes may be invaluable, both for making a replication

replicate and for diagnosing the differences between similar experiments with contrasting

outcomes.

Of course a mechanically literal replication will involve the same procedures for analysing

the  data  as  the  original  one.  There  is  a  case,  though,  for  literally  reproducing  the

production of  data  while  varying  its  analysis.  One reason might  be that  the original

experimenters'  probability  assignments  were  contestable,  either  because  they  had  a

partisan purely subjective element, or because they were based on a questionable model

of the process generating the data. (There is more on such models in the next chapter.)

This may be performed literally  with the same statistical  tests of  the same data but

different numbers. Or the intention may be nearer to making a case for an alternative

42 Saey (2015) gives references to a number of recent studies of the problem.
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way of understanding the situation. This would be part of a larger undermining effort and

could well have the limited ambition of showing just that an alternative hypothesis when

used with alternative probabilities could fit this data. The emphasis then is on possible

probabilities, which would be supported by an achievable model of the data production

and  which  would  make  the  data  probable.43 (More  on  how  hypotheses  suggest  the

probability  of  data  in  the  next  chapter  (4).)  These  might  play  the  role  of  reversal

principles as in the previous chapter (2).

This prompts a very basic reflection. Doubt has closer links to possibility than probability.

So when one is making a case for an alternative rather than trying to establish a claim it

is appropriate to think about what is possible, or what might be probable, were this

alternative the case, rather than what actually is probable given ones best estimate of

the numbers. So wide-ranging scepticism, for example about the ambitions of science, is

not best met with the observation that our conclusions are probably correct. We need a

manageable version of the claim that we have good reason to believe they have some

kind of necessary hold on contingent facts.

Further  in  this  direction  we  get  deliberately  varied  replications,  varied  in  setup  and

materials as well as in analysis. The aim is to reveal the failure of the claim an earlier

experiment seemed to support when applied in different circumstances or to a different

population. These are sometimes called "conceptual" replications.44 Then one is trying not

to use the same design and materials although the concern is the same hypothesis, at

least in verbal terms. Which aspects of the original experiments are deliberately varied

43 An example might be the recent use of quasi-significance-testing in particle physics, as with the large 
hadron collider. If the aim is to test extensions of the standard model then probabilities that presuppose 
it are appropriate, but if the aim is to explore alternatives to it they may be question-begging. Dawid 
(2015), Buckley (2016), Perovic (2016). 

44 Stroebel and Strack (2014). I owe this distinction and this reference to Matthew Smithdeal.
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will depend on the limitations aimed at. Again it will be important to replicate all the

aspects that one is not deliberately changing as precisely as possible, and again this will

often mean consulting with good records of the target experiment. 

Experiments come in series, from small-scale exploratory experiments shaped around

rather vague hypotheses to more specific experiments of more precise hypotheses, then

branching to literal replications reproducing an original experiment as exactly as possible

and  to  these  "conceptual"  replications.  These  may  again  be  deliberate  attempts  to

establish a hypothesis, though it may be a purely negative one, that an earlier result only

holds under given circumstances. So here too we find a gradation in the definiteness that

is  aimed  at,  and  again  the  attempts  to  provide  convincing  evidence  are  naturally

associated with the probabilities according to the experimenters' best estimate of them,

while the attempts at making a case for a possible alternative are naturally associated

with the probabilities that might be found, for example according to plausibly different

background hypotheses. But in this case the possibilities in question are those one gets

by variation on more specific aspects of the model or expectations that were originally in

force. 

(3) Select individuals for the experiment from a background population that you intend

the hypothesis to apply to, and divide them into two groups. The experimental group has

or has applied to it the attribute you are most interested in, and the control group does

not. Try to make both have as great a diversity of factors that are not known to be

relevant to the hypothesis in question as possible. 
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Part of the purpose is in a way obvious, and may seem blandly uncontroversial. Part is

not, also, and discussing the un-obvious part prepares for some points about items later

on  the  list.  We  are  going  to  compare  the  two  groups  hoping  that  this  will  indicate

something about the attribute, and we want to isolate it from other factors that might be

relevant  as  much  as  we  can.  I  have  expressed  this  so  that  it  does  not  require  an

experimental  intervention  (such  as  applying  a  treatment)  and  does  not  have  to  be

directed at establishing causation. The reasons for expecting that overall similarity will

help here are not quite as obvious, though.

It  is  easy  to  find  obviously  crazy  inferences  that  would  ignore  this  advice.  Take an

experimental group of people and write a magic symbol on their foreheads. You will find

that  all  of  this  group  eventually  die,  showing  that  the  symbol  is  very  powerful.

Comparison with a control group whose foreheads are left untouched would prevent this.

And if we do choose a control group, but of young healthy people, we will usually find

that the treatment group has a lower life expectancy, also indicating that the symbol has

a sinister power. 

So  why  should  comparing  samples  with  and  without  the  attribute  provide  evidence

whether it is associated with some outcome? And why should this evidence be stronger if

the two samples are otherwise similar? In fact, all similarities between the two groups

are not equally relevant.  Suppose that we are considering the relevance of  age to a

particular disease. Having groups that are matched for gender is likely to be relevant,

because we know ways in which men and women age differently. However we do not

know connections between age, the disease, and the first constant in someone's name.
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There is no reason, either from our expectations or from the facts as they actually are,

why groups that are similar in this respect should provide better evidence. Moreover

some attributes of the subjects will be of greater relevance than others. Ancestry and

previous medical history are likely to be more important than political affiliation and taste

in music, themselves more important than how their names are spelled.45

These rankings of evidential relevance concern what might have an effect on the truth or

falsity of the hypothesis. Experimenters can only use the best information they have on

what will have such an effect. If this information is wrong, the evidence that it leads to is

well conceived but misleading. Later generations may say "took to be a sign of" rather

than "provided a  reason why".  This  provides  a  constraint  and a  qualification  on  the

assignments of probability that an experimenter uses. Probabilities that are unglued from

comparisons of the ease with which events can as a matter of fact occur have a particular

irrelevance to questions of how effective an epistemic strategy is. Probabilities give a

different and finer grid than degrees of causal possibility, but different though they are,

the  two  have  to  generally  align.46 (This  applies  both  to  finely  grained  quantitatively

precise probabilities and to cruder approximate ones.) 

(4)  Block  the application of treatments to subjects.47 That is, apply the treatments to

some but not all  of the subjects,  so that some get each treatment or possess some

attribute and some do not. Arrange the applications and the rest of the process in a pre-

45 Influenza would be a candidate for the disease. Some other diseases would work less well because there 
may be a correlation with national origin of ancestors, and thus a greater correlation with names.

46 A minimal constraint is that a proposition never have a higher probability than one it is more possible 
than. It is easy to think of probability assignments that do not satisfy this constraint. The converse 
constraint is much less plausible.

47 Blocking is the standard term for this aspect of experimental design. To avoid confusion I usually refer to 
obstructing or inhibiting an unwanted causal process rather than blocking it.
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planned  structure,  perhaps  spatial,  with  an  eye  to  what  could  go  wrong  with  the

experiment.

This is a refinement of the previous norm. It makes a manageable comparison between

individuals with and without relevant attributes, by structuring so that comparisons can

be made part of the analysis of the data. It is like the previous norm, making groups

relevantly uniform, in that it responds to anticipated additional causes. But it is easier to

apply when selecting individuals with or without particular attributes, or making them

have them, is difficult.

There are many blocking designs, described in textbooks of these things. There have to

be, because the relevant attributes will lend themselves better to some arrangements

than others.  Some designs  would  not  be more  effective  in  some situations,  though,

unless there were a hierarchy of relevant attributes. Some designs are ineffective, for

some hypotheses in some circumstances, because they are unlikely to have any effect on

the result.

(5) Randomize the selection of experimental subjects from the larger population so that

neither you nor the causal gods can predict which objects have which attributes. This is

mostly directed at unknown or unanticipated attributes, and gives some independence

from prior expectations. Attributes peculiar to the sample will still have an influence but it

will  be  distributed  in  the  same  way,  with  the  same  probabilities,  as  in  the  general

population. There is some tension with the previous two rules, in that they encourage a

deliberate distribution of attributes in the groups while this one encourages the groups to
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have whatever distribution is found in the larger population. As a result, quirky features

of  the  larger  population,  irrelevant  to  all  or  even  acting  against  the  hypothesis  in

question, may have an unwanted influence over the data. This may happen when the

hypothesis concerns all individuals that could within easy possibility possess an attribute

while the sample is drawn from the actual population with all its irrelevant features.

The tension is not mentioned in standard accounts of experimental method. Resolving it

will inevitably mean taking degrees of anticipated causal relevance into account. One way

might be to make a large selection from the population with a mind to the attributes that

are best included and those that are best minimized, then drawing actual experimental

groups from this. The first selection would be directed at known troublemakers and the

second at invisible miscreants lurking in the phenomena.

A larger population from which the groups might be selected could fail to be ideal for an

experiment directed at a hypothesis concerning that very population. The reason is that

the hypothesis is meant to be a law, a regularity, true because of the workings of its

objects. On the other hand, the actual population may be formed as a result of factors

that are irrelevant to the hypothesis and is thus not typical of the full potential range of

things of that kind. (For an extreme example, suppose that the hypothesis concerned the

origins of life, and the only available samples, in fact perhaps the only ones to exist, were

on the surface of the earth. This would be no problem for hypotheses concerning life on

earth but might well bias the evidence for hypotheses about life more generally.)
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Randomization is usually done with a table of random numbers, or a randomizing device

such as a die or a roulette wheel. Their distinguishing characteristic is usually taken to be

that the probabilities of the various assignments are equal, and independent of previous

assignments. But this presupposes that events with equal or nearly equal probabilities

will occur roughly equally often. Without this randomization will not serve its function.

(So  superstitious  people  who  think  that  the  numbers  in  their  date  of  birth  occur

especially  often  should  use non-standard  randomizers,  or  use something like Lewis's

principal  principle  together  with  some  record  of  long-run  occurrences  to  make  their

probability assignments match what they see occurring. )

(6) Randomize the application of the treatments so that neither you nor the causal gods

can predict which get which treatment and which get none, and it would take a supra-

causal god to make one experimental object get the treatment and another not. Again

the intention is to safeguard against quirky unanticipated influences and focus on factors

relevant to the hypothesis. There is a subtle difference with the previous randomization,

though they are often not separated, which shows up when the hypothesis to be tested is

explicitly causal. Then the aim is to make a situation where the suspected effect might be

produced by few causes except the suspected one. Random application of a treatment

inserts itself between the determination to apply the treatment or not and many or even

all  causes  except  that  determination  and  its  direct  causes  and  effects,  so  that  the

treatment  occurs  on  all  causal  chains  leading  to  the  phenomena  produced  in  the

experiment. That is the aim, at any rate. As a result we can discriminate between direct

causation and the effects of common causes. (More on this in chapter 5.)
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In  terms  of  the  themes  of  this  chapter  the  immediate  point  is  that  a  randomized

application of a treatment usually produces a sample that is not found in nature and

(patterns of) phenomena of a kind different from any exhibited by the population in non-

experimental situations. That is a virtue. It makes it easier to isolate what is relevant to a

particular  hypothesis,  which  may  itself  help  explain  non-experimental  events.

Randomization also illustrates the theme about reversal conditions in evidence, which I

say more about below. 

Randomization can indirectly make an experiment fit a hypothesis less well. Suppose that

we are  investigating whether exposure to  an environmental  influence,  which  we can

control, increases susceptibility to a rare disease enough to make it protect against it

generally. So we need to form treatment and control groups, but since the disease is rare

they are going to have to be large. And so, getting large enough groups given that the

decrease in the occurrence of the disease is likely to be slight will require recruiting from

a  large  population.  Our  first  inclination,  to  use  readily  accessible  subjects  near  the

laboratory, would then require more effort and expense, so we expand the pool by also

working with people from the other side of the country. But what we do not know is that

the  genetic  composition  on  that  far  side  is  not  typical  of  our  country,  so  that  the

environmental influence will have a lesser effect there. Not knowing this, we select from

the larger pool and find that the influence makes very little difference. But if we had

stuck with the first  inclination and simply used as many nearby people  as we could

readily recruit we would have seen that protecting people against the influence would be
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worth the cost. The now familiar point is that you often do not know the full nature of the

evidence you have.48

(On a more subtle version of the point the probability distributions for the population of

interest are different relative to different intended applications. Disparity of causal origin

is a root of this. A topic to return to in the next chapter.)

(7) Use a  placebo whenever there is a possibility that the fact of being treated rather

than the treatment itself is among the factors responsible for the data. (Unless that is

what the experiment aims to show, of course.) This also can often create a situation that

is not common outside experiment, since in other contexts the effects of expectation and

treatment are often too tangled to be separated.  

But analogues of placebo-use do sometimes occur in extra-scientific inquiry. If you want

reassurance that the flight semi-audible announcement was of the flight you have been

waiting for all day you ask the opinion of people not waiting for that one. If you want an

objective opinion about whether you are overreacting to a situation you present it to a

friend who you trust in a way that does not reveal whether you are involved in it. (The

friend often sees through this.) Note however that in doing this you are choosing to

ignore possible sources of information. People in the airport not waiting for that flight,

perhaps  not  even  travelling,  may  be  tuning  out  the  annoying  announcements.  The

trusted person will not be able to factor in your particular reactions. 

48 This is related to points about randomization made in Grossman and Mackenzie (2005), which argues 
that the advantages of randomization often do not outweigh those of other statistically desirable 
qualities.
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Such problems apply less with experiments in scienc, because there is usually only one

source  of  information.  But  they are  still  possible.  They will  occur  for  example  when

human subjects are given instructions that need some interpretation. The experiment

might concern how well people pick up hints about an object. Two hypotheses are being

compared. One asserts that we most readily interpret hints about familiar objects, and

the other incidents that we do best with animals. In the experiment one person gives

cues  about  the  kind  of  object  they  have  in  mind,  and  a  second person  produces  a

candidate kind to match it.  We have the option of  doing this  also with unmatchable

descriptions,  which  are  neither  of  familiar  objects  nor  of  animals  but of  remote and

unfamiliar things. These serve as a kind of placebo, preventing the second person from

eliminating possible answers in terms of the purpose of the experiment. But if we use

this  placebo we are excluding a significant source of  people's normal  interpretations,

namely  their  understanding of  the reasons for  an  utterance.  This  creates  a  distance

between  the  experimental  results  and  outside  the  laboratory  they  are  meant  to

illuminate.  This  relativity  to  context  frequently  qualifies  the  planning  and  results  of

experiments, where we have to choose between aiming at underlying processes ("deep

causes" in the terminology of chapter 5) and aiming at reliable patterns outside the lab.

But it is also telling that this is an issue about the causal origins of the data. Placebos

shield against one source of data, so we have to decide whether this source is relevant.

Are we interested in  discerning some particular  factor  shaping them, or in getting a

comprehensive picture of the variety of their causes?
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(9) Blindness applied to experimental subjects is helpful when there is any chance that

the expectations of subjects, experimenters, or others involved in the experiment, can

influence its outcome. 

This is single blindness, where human subjects do not know whether they are receiving

the treatment or  not,  but the experimenters may know, and serves much the same

function as administering a placebo and has similar rationale and limitations. Subjects

may be kept in  ignorance in  more general  ways.  For  example they may be given a

deliberately misleading interpretation of the purposes of the experiment. This is common

in psychology. Again there are specific factors that are excluded, and this creates an

unusual situation directed at a particular theoretical purpose and sometimes interfering

with others.

There is a slight tension between single blindness and randomization. Blindness might

ask for subjects from a group,  some of  whom might understand the purpose of  the

experiment  in  inadmissible  ways  (suppose  that  we  are  studying  whether  psychology

professors are less susceptible to subliminal influences). But if we select randomly from

this group we will get these unwanted subjects. The obvious remedy is to test for the

wrong kind of subject first and then to randomize.

(10) Sometimes double or triple blindness helps the purpose of an experiment. In double

blindness procedures many of the people carrying out the experiment do not know which

treatment has been given to whom, and in triple blindness some of the functions of data

collection and analysis are separated from the final conclusion-drawing. For example the
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classification of subjects reactions in a psychology experiment may be handed over to

assistance who do not know the true purpose of the experiment. This protects against

self-serving interpretation by the experimenter with a favoured hypothesis to support.

Again the situation produced is  unnatural,  though in  this  case  the  fact  that  it  is  an

experiment testing a particular hypothesis is part of what is unnatural about it. And again

the result is a delicate mixture of advantages and disadvantages, with a balance that

depends on the purpose of the experiment.

reversal principles again

In a previous chapter, (2), I introduced the idea of a reversal principle, which derives one

conditional "if data then hypothesis" from another "if hypothesis then data" given certain

conditions. I suggested that experiments provide conditions where these are true. Do

they? Adherence to these rules very often does.

The general  idea amounts to the Sherlock Holmes principle.49 If  something can have

many causes then restricting their  number or  range or  influence increases the likely

causal  force  of  those  that  remain.  To  put  it  explicitly  but  still  in  a  preliminary  way,

suppose that e can be the result only of a finite range of identifiable causes C1, C2,..., Cn

= H,, where H is the hypothesis we are testing. Suppose we have eliminated C1,…, Cn-1.

Then the only remaining possible cause is  Cn.  So when e is caused to appear in an

49 Often quoted, from “The Adventure of the Beryl Coronet” where Holmes says “It is an old maxim of mine 
that when you have excluded the impossible, whatever remains, however improbable, must be the truth.”
Note the slide between possibility and probability. Note also that especially when formulated purely 
probabilistically this involves a balance between the force of the exclusion – how improbable the excluded
factor becomes – and the initial improbability of the conclusion.
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experimental context that has prevented C1,…, Cn-1, then Cn is the cause and thus H is

true. But this is the non-comparative reversal condition  

X  ( ((C1 v ... v Cn)   e)   (e   Cn) ) where X is the background conditions and the

situation set up by the eXperiment. 

That is the general strategy. But it is much too rough as stated. To formulate it a little

more carefully note first that the Ci describe causes rather than arbitrary conditions. It is

more plausible that causes are finite in number (proximal causes, anyway). And it is

more often true that an experimental situation can eliminate some of them. Still, in real

experiments  one  diminishes  but  not  eliminates  the  influence  of  unwanted  causes

(another reason that statistical apparatus is inevitable) and even drastically reducing all

but one is rarely a possibility.  But we can stick weights on the Ci,  without changing

anything essential. The weights can represent probabilities, relative causal influence, or

normalized products of probabilities and influences. Then the presence of X can change

the weights, proportionately increasing that of Cn while reducing the others. 

So let   wo
oi,…,wn

oi  be  the  weights  that  the  causal  factors  C1,…,Cn have when they

produce  Hi (i=1,2), or its effect that is the proximal cause of e outside an experimental

context, and wo
wi,…,wn

wi those that they have within it. If the setup is at all competent

this X has the  consequence that  

X  ( (wo
o1 C1 &...& wn

o1 Cn)  e1 ) and X  ( (wo
o2 C1 &...& wn

o2 Cn)  e2 )     .

where  ∑iwi
w1  =1 = ∑iwi

w2  and for j ≠ n wj
w1<wn

w1  ,  wj
w1<wn

o1  and wn
w1 >wj

o1 . (That

simply requires that X reduce all the unintended causes to the benefit of Cn.)
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Then the same reasoning as used in chapter 2 applies. (Remember that Cn is Hn or its

consequence that is proximate to en.) If  the result of the experiments is e1 then the

incompatible e2 did not occur, so if one of H1 or H2 is true then it is H1. Or put more

formally

X  ((wo
o1 C1 &...& wn

o1 Cn)  e1)    (e1   Cn) 

This is the reversal principle for experiments described in terms of weighted causes. The

formal  versions  have  the  advantage  making  explicit  how  the  reversal  relies  on  the

presence and properties of the weights. If they do not have the required properties then

the reversal will not work. The point that Cn is the proximal cause on the route from Cn to

e1 is  particularly important. Experiments do not always tell us why the immediate causes

have the effects that they do. It is also significant that this reversal allows for the less

than total reduction of all but one cause, so that the result is subject to the inconstancy

of the others. It shows us not that something is always the case but that it is often so,

true with a given probability.50

There is a delicate balance here. On the one hand a typical experiment gives information

about a proximate cause under the experimental conditions only. On the other hand the

tunability of experiment allows us, with ingenuity and luck, to focus on deeper reasons

why the apparently proximal causes have their effects. This often means that the results

of an experiment apply best to a particular domain under particular conditions.

50 Again there are issues of how well an experimenter can know what the force of the results are, and in 
particular whether the inequalities among the causal probabilities (propensities) hold. But it is striking 
that this context modal considerations (which situation the parts more from actuality) and probabilistic 
ones work together (though for a rather particular interpretation of probability, as measuring causal 
tendency).
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cheating and the force of evidence   

What is the price for breaking the rules? Consider "cherry picking" — forming your beliefs

or what you tell others only on what results from favourable studies51 — or planning in

advance to cease a trial  when a parameter reaches an intended number. These may

result in true beliefs but the “evidence” they are based on will not be objective (sensitive,

robust) evidence , and what it leads to will not be knowledge.

Putting the point this way suggests another class of cases. Suppose that the basis for the

evidence is not what we think. What we took to be a placebo is actually easily recognized

as such. (I gather this is not so rarely the case.52) An over-zealous assistant has culled

the animals who did not seem to be doing well. A computer file has got corrupted. None

of these things suggest that the researchers are dishonest or that they are reasoning

badly. But they do suggest that the claim to knowledge is mistaken; the conclusion is

well justified and perhaps true of many cases, but not known. Conclusions formed like to

this in similar cases will often be false, however sensible or rational the person was in

using them.

But  which  violations  of  which  norms  present  the  greatest  threats?  The  relativity  of

experiment-backed conclusions to intended domains suggests a classification. Contrast

two extremes. At one the evidence is for a hypothesis very generally, in a wide range of

populations in many circumstances. (An example might be an experiment in molecular

biology to determine an aspect of the gene-expression mechanisms that fits daughter

51  Tests sponsored by drug companies are often accused of this sin.  

52 As a student I was a volunteer subject in a psychology experiment where it was pretty clear that the 
hypothesis in question was unrelated to what we were being told.
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cells  to  synthesize the  proteins  of  their  parents.)  In  such cases  further  experiments

testing the hypothesis under variant conditions will  be relevant, so very wide record-

keeping makes sense, to facilitate "conceptual" replication. Some of these experiments

may well draw from different sub-populations. And in general provision against the full

range of influences, including unknown ones, will help wide export. Randomized selection

of  experimental  groups  tends  towards  making  them  homogeneous  with  the  larger

population, and so it  is  a standard such provision. It  is high on the list  of  desirable

features when context-independence is the aim.

At the other end of the spectrum, extreme context-dependence is approached the more

the sample is taken from a very particular sub-population influenced by factors peculiar

to that sub-population or even that sample. (An example might be an experiment to

discover the breaking strength of a particular suspect girder manufactured by a process

that has many variable and even random elements.) In such cases  the focus is  on

populations much like those in the experimental groups, and subject to influences much

like  those  in  the  experiment.  More  precise  replication  is  then  appropriate,  and

information about the details of the experiment is worth preserving. Inasmuch as the

description  of  the  population  and  the  experiment  is  accurate,  we  will  have  more

information  about  the  specific  factors  that  will  have  been  taken  account  of.  Put

differently, there is potentially a fairly complete list of what is allowed to vary from case

to case and what the experiment tries to keep constant. Blocking techniques tend to

keep this control. Accurate background information about which situations are causally

similar to those in the experiment is obviously useful here, when we can have it. When
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the parochial domain is human beings placebo and blindness measures can be relevant to

keep unwanted influences from beliefs and expectations at bay.53  

Between the extremes the balance is, well, between. It can be summed up with a table.

wide export mixed narrow export

conceptual replication replicate towards application exact replication 

\\\\randomized selection\\\\\\\\\\\\\/\/\/\////////////blocking////

                .............................placebo, blindness.........................

There is a connection here with the issues about error versus ignorance discussed above.

But what emerges is more subtle, and suggests some finer tuning of the distinction. By

choosing which influences to shield against against and which to leave functioning, to the

extent that we can, you decide the purposes of your hypothesis acceptance. If you are

fishing for promising beliefs in a certain area you set up experiments so that they are

particularly sensitive to the relevant influences, and shield against those that are more

important elsewhere. So you can choose which kinds of ignorance you want most to

avoid.  The  issue  is  broader  than  simply  what  kinds  of  hypothesis  you  accept.

Accumulating evidence for interesting possibilities is equally valuable. And using reversal

principles,  even without the probabilistic  ideas that become increasingly important in

later chapters, need not lead straightforwardly to acceptance or rejection. For what you

get from such a principle is that an experimental setup is sensitive to a certain kind of

fact. You can decide how sensitive you want it to be, in terms of the alternatives you

compare with it and in terms of the fine-tuning of the conditional that you use. In all

53  Sometimes these influences are what we want to understand. An experiment may suggest that a folk 
remedy has no strictly medical value, while at the same time its aura gives it effectiveness for many 
people.
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these  ways  choosing  how  you  distribute  emphasis  on  the  various  desiderata  of

experiment allows you to influence the kinds of hypothesis that survive an experiment.

This chapter has focused almost exclusively on scientific experimentation. In everyday

pre-scientific life there is also a tension between knowledge-directed interventions that

aim at a specific situation and those meant to tell us something more general. Common

sense is notoriously unreliable when applied to unfamiliar situations. When we learn from

acting on things our knowledge usually applies best to those particular things, the people

and  physical  objects  that  we are  in  touch with.  Its  failures  to  assess  causation  are

particularly salient. Though I shall not do more than state the claim, it is very plausible

that  pre-scientific  acting to know is  most like experimentation in  a tightly  controlled

context  on  a  specific  small  population.  More  like  the  girder  case  than  like  gene

expression. 
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chapter 4:  robust tests 

probability theory meets modal semantics

Experiment is where data meets doctrine. They have to reach a compromise, but it may

take  a  long  conversation.  Procedures  for  testing  hypotheses  against  the  results  of

experiment are at the heart of most experimental research. But these procedures are

controversial and factional. They are contested in the "statistics wars" between adherents

of different conceptions of probability and associated schools of hypothesis testing. Yet

the practice of most applied statisticians is rather eclectic,  drawing on ideas coming,

sometimes inconsistently, from the warring schools. This suggests that lurking behind the

practices there are underlying unstated principles that are the same whatever line one

takes  on  the  same  time  more  contentious  issues.  This  chapter  is  a  step  towards

formulating them.

The chapter is shaped by an attitude to the reevaluation of hypotheses in the light of

evidence, from an early judgement whether they are worth further investigation to a late

decision to take them as established. Talking of confirmation insinuates without argument

the idea that evidence works the same way at all stages of this process, something that

ought to be seen more critically. Still, the assurances that we want in the evolution of an

idea from conjecture to orthodoxy concern various aspects of the conditions under which

a proposal could in fact be true, given the actual often unknown facts. We want evidence

to push us in the direction of greater truth, nearness to knowledge. So theories and

inferences can be less secure than we intelligently and honestly suppose. A theory can be
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false, unbeknownst to us, and an inference can be risky. In particular we want to link

probabilistic accounts of hypothesis testing to facts about the conditions under which the

hypotheses could or would more or less readily be true. Probability meets possibility.  

The  epistemological  theme  of  this  chapter  is  the  stages  between  curiosity  and

acceptance,  and  the  different  tunings  of  evidence  that  they  require.  (Including  the

tunings of probability.) These are also themes for the philosophy of science, though with

an emphasis on the procedures used in contemporary science.

Metamorphoses, egg to larva   

It begins as curiosity and hatches as conjecture, sometimes a fairly definite conjecture

and sometimes not  more  than a  feeling  that  something  of  some kind  is  happening,

perhaps that some pattern is not an accident. So you begin to investigate. (I shall leave

it open until chapter 6 whether "you" is singular or plural.) 

You  are  going  to  develop  the  idea  experimentally,  so  the  first  step  is  to  construct

experiments indicating whether there is anything going on and if possible what kind of a

thing.  (Whether  a condition might  be a  result  of  a bacterial  infection;  whether  dark

matter involves new fundamental particles.) The results may suggest a more focused

conjecture and your next task is  to  get this  into shape for  whatever explanatory or

practical task is intended. This may involve uncovering the causal processes behind the

effect, relations with other better established processes and principles, and more careful

delineation of what is and isn’t being suggested and under which conditions. All of these
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may involve factual  discoveries and modelling of  subsidiary mechanisms.  Somewhere

along  the  line  comparisons  with  variant  or  competing  formulations  are  likely  to  be

helpful. And then in a final stage the overall strength of the evidence must be assessed

and  the  surviving  doctrine  must  be  woven  into  the  fabric  of  established  belief.  The

process can take weeks, months, years, lifetimes. The very final mature version can be

short-lived, lasting just long enough to engender another cycle of ideas.

The process begins with a rough idea that asks to be either developed or forgotten. 54

Take the question to be "is anything going on here". The possibility to be ruled out is that

some apparent pattern is entirely accidental or illusory. (These are different, of course;

some accidents are very solid.) If this is not so then it might be supported by experiment

under  controlled  conditions,  including  the  production  of  examples  that  would  not

naturally have occurred. The data of such an experiment must be analysed to compare

them with natural variability or chance. The often-maligned significance test has honest

employment here. You first construct a statistical model — details below — which gives

probabilities that the appearances are indeed due to chance. Then you see how probable

or improbable the experimental data would be if this particular chance mechanism had

produced them. You judge this in terms of a fixed level of improbability, a p-value below

which you will not take the idea seriously.55 This much is familiar, but it leads to a chain

of further points. 

54 “Idea” is deliberately vague. It could be a suspicion, a conjecture, a working hypothesis, a best available 
explanation, a solid part of established doctrine,… . Theory-like vehicles that are not final and self-
contained like the older concept of a theory are a theme of recent philosophy of science. Cartwright 
(1994, 1999), Morgan and Morrison (1999), Wilson (2018), and even in a way Van Fraassen (1980 ).

55Garthwaite, Jolliffe and Jones (2002, section 4.3). Most of the my statistical references will be to this 
work. It is a somewhat sophisticated and compressed exposition; similar topics are covered in Lehmann 
and Romano (2005), Wasserman (2004), and most accessibly in Bulmer (1979). I am supposing a 
situation where an upper limit is appropriate. Different situations may call for a lower limit or limits at both
extremes.  
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Many different factors can be called "accidental" (or "random", or "chance"). Even when

one concludes that  there is  some phenomenon needing an explanation the data  will

almost always have some degree of irrelevant variation — the line almost never passes

through all the points precisely — which is usually due to the effects of other causes and

to errors in measurement and observation. Sometimes it is due to inherent randomness

in the correctly hypothesized factors. So the aim is not so much to eliminate unexplained

variation as much as to diagnose it correctly. Statistical models play a role here also.

Even when one has distinguished between variation stemming from the hypothesized

factors and from other sources and made a case that something real is going on, or even

what kind of a something it may well be, an experiment like this is not going to reveal

much about the details. There will invariably be an array of alternatives to the "there's

nothing here" option. (Although a conclusion that there is something to be understood

better,  for  example  that  a  fertilizer  improves  crop  yields  or  Fisher's  example  of  the

woman who claims be able to tell whether milk or tea was poured first, can be surprising

and look rather as if it was an explanatory theory.56) So this first stage, and this kind of

testing, can only be the beginning of an investigation. Most of the well-known abuses of

significance testing stem from taking it as if  it were appropriate further along in the

process.57

Assuming that the investigation will be continued, the criteria for survival, "passing" the

test in this particular way, can be fairly permissive. p, the confidence level, does not have

56 Fisher (1935). Note that Fisher has her fail the test, so that there is no (causal) phenomenon to 
investigate.

57 Cohen (1994), Gigerenzer (2004), Wasserstein and Lazard (2016).
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to be extremely low. It can however be varied in accordance with the financial or other

cost of proceeding with an investigation.

Keeping these points in mind, tests like this are not completely different from some pre-

scientific  procedures.  We often  consider  events  and  conclude  that  they  cannot  be  a

coincidence. All your five best friends have unusual quirky and sometimes incompatible

senses of humour yet there is a joke that appeals to all of them. If you think that just

about impossible that an ordinary joke happens to hit  all  their buttons then you will

wonder whether this is an especially powerful joke, of almost universal appeal. This does

not mean you will believe the conjecture, but that you will try to remember it and try it

on others. Otherwise you will just put it down to chance.

A  different  application  of  a  similar  idea  outside  of  science  arises  with  the  modern

realization that many things that result from chance cannot be attributed to human or

other agency. They just happen, and there is no point looking for deeper reasons or

motives. So when tragedy strikes good people rather than villains it is not because of

some mysterious choice of  the gods but simply because the causes of  tragedy have

nothing to do with the causes of personal value. The idea that profound powers have it in

for the affected person is a nonstarter, since what happens is at least as likely on the

milder assumption of randomness.

At this point there is a connection between the everyday and the abstract ends of the

spectrum,  more  specifically  with  a  frequently  cited,  though  puzzling,  criterion  for

hypothesis  tests.  The  controversial  “likelihood  principle”  requires  that  hypotheses  be
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judged just on the actual data, not in comparison with what might have occurred.58 But

consider how you would react if you meet a friend, who always dresses very formally

because it is required for his work, in the middle of the day downtown in shorts and a T-

shirt.  You wonder whether he has changed employment or  lost  his  job.  (You do not

conclude that either has happened, but rather that you should ask him or otherwise find

out.) You have this thought because of what you do not observe, more formal attire. The

basis is the absence of the most likely consequence of what you would have expected.  

The moral to draw is that the likelihood principle is not a good guide when the purpose of

a test is to clear an idea for further investigation. This should not be very surprising,

since the upshot of such a test concerns an indefinite might-be rather than a definite

claim on fact.

The thumbs-up that a significance test can give to an idea is pointless unless the idea is

at least possible enough to be worth investigating. The decision is made in terms of

probability, from probability distributions based on a comparison of what the idea claims

and what is expected if the results are due to chance. The probabilistic aspect of both

may well need to be made more explicit enough for a numerical comparison. This is the

task of a statistical model, discussed below. The limited aims of such a model, for this

investigation-prompting purpose, require at a minimum that when the suggestion is more

probable than chance it is at least as possible: if only one of the suggestion or chance

production is true then the suggestion is a better bet. If this is not the case then the

assignment of probabilities to events is unconnected with what it would take for them to

occur, and the whole procedure is hollow.   

58  Birnbaum (1969, 1972, Grosman (2013), Gandenburger (2014) 
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pupa to larva 

Once the germ of an idea has acquired enough support that we are ready to investigate it

further, it needs to be brought into shape for more conclusive evaluation. So it must be

formulated more precisely and the more precise versions must be compared. A central

aim of precision here is to capture more details of the data, although many details will

not  be  available  until  experiments  to  choose  between  variants  are  designed  and

performed. So we can expect that in general there will be a number of variant versions,

and experimental ingenuity will be needed to compare them. Comparison is the main

aim,  and  experiments  are  directed  at  this.  Comparison  and  likelihood  are  good

companions. The likelihood of a datum relative to a hypothesis is its probability given or

conditional on that hypothesis.  (It  is different from conditional probability in that the

likelihoods  of  a  set  of  mutually  inconsistent  and  exhaustive  outcomes,  given  a

hypothesis, need not sum to 1.) Comparing the likelihoods of the same data on two

different hypotheses — in particular now two different variants on one guiding idea —

tells us a lot about how well each hypothesis handles the data in comparison with the

other. The comparison is most commonly summed up by the ratio of the two.59  

There is serious work to do before this is possible, though. Much of the work involves

constructing two kinds of models. The first kind, mediating models, connect theoretical

ideas with observable phenomena. The hypothesis might concern the effects of a drug on

an infection and it might need assumptions about how quickly the drug is absorbed if

taken  in  a  particular  form,  how  rapidly  it  diffuses,  and  how  long  it  persists.  If  an

59 Hacking (1965), Pawitan (2013).  
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experiment is performed using such a model and it gives no useful results, the model can

be tweaked  and  the  experiment  re-done  while  still  testing  the  same theory.60 (In  a

different application, or as inspiration for a different theory-pupa, a different model might

be appropriate.)   

A mediating model describes the connection between the processes that a hypothesis

supposes and some class of phenomena. But it typically does not address the actual

distribution  of  outcomes  and  the  extent  to  which  they  conform  to  the  postulated

influences.  For  this  we  need  a  statistical  model.  It  can  consist  simply  in  a  set  of

probability distributions, traditionally given in terms of a range of one parameter in a

standard formula for a family of distributions. Then a particular narrow range of values

for the parameter is associated with the specific hypothesis. If it is to be compared to an

alternative then that alternative will have its own range of parameter values. These two

ranges are important. They provide the probabilities for the two likelihoods. (I discuss

this further below.)

Researchers usually  construct  their  own mediating models.  But statistical  models are

often the work of statisticians not centrally involved in an experiment. They discuss with

the experimenters the kind of  process involved and the differences between the two

hypotheses and then produce the model, which is often just two ranges of a parameter in

a  common  distribution.  The  doctrine  behind  such  model-making  consists  largely  of

statistical folklore; there is very little in the way of general explicit theory.61 (If it existed,

60 Morgan and Morrison (1999). The essential point is that such models are directed at capturing the data in
a particular application, and at making this data manageable instead of stating in anything like 
completeness the causes of the data. That is why variant models are not incompatible; they may do the 
same job in different ways.

61 Cox (1990), McCullagh (2002), Mayo (2018) section 4.8 discusses the simplifying ("false") aspect of 
statistical models.
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it would amount to a kind of quantitative scientific metaphysics. So it is not surprising

that there is little to be had.)

Armed with models of these two kinds, we can test hypotheses comparatively. There are

competing  accounts  of  how  to  do  this.  They  differ  mostly  on  the  source  of  the

probabilities  and  on  whether  probabilities  for  the  data  are  needed,  as  they  are  on

Bayesian approaches. In standard non-Bayesian methodology "prior" probabilities of data

are  not  necessary,  as  likelihood  ratios  do  not  need  them.  And  on  these  traditional

approaches the probabilities actually used in the analysis of an experiment are derived

from the hypotheses themselves. That is, they are intrinsic to the statistical hypotheses

that  the  model  associates  with  the  more  substantive  hypotheses  of  association  or

causation. The analysis of the results of the experiment is directed at evaluating which

distribution — so typically which parameter values — best fits the data. The heart of this

is often a likelihood ratio where the likelihood of the data given each hypothesis is given

separately, since it is actually the statistical targets, such as the ranges of parameter

values as supplied by the statistical model, that are compared62. (One effect is to hide

from experimenters that there is any issue about the origins of their probabilities, since

they seem intrinsic to the hypotheses and the transmutation of the hypotheses really of

interest into claims about parameters and distributions is handed over to the statisticians

who simply appeal to their collective wisdom.)

A  frequent  form  for  this  stage  of  development  of  a  scientific  ambition  is  thus  the

comparison of variants of a common idea with assistance from improvised models of both

mediating and statistical kinds. Here too there are precedents in pre-scientific life. And

62Garthwaite, Jolliffe, and Jones (2002) 4.6 & 4.7, Lehmann and Romano (2005) ch. 1.
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the anticipation of comparative confirmation and the anticipation of modelling are also

found. Suppose that you have a suspicion that someone is hiding something in their

descriptions  of  their  past.  That  is  a  general  pupa of  an idea,  but with a  few vague

indicators on their part you can take it seriously enough to move to the next stage. You

are then comparing the possibility that they are deceptive about what they are telling

you about past accomplishments and qualifications against the alternative that they are a

modest  person who becomes awkward and indirect  when they might  admit  to  what

someone else might boast of. Since you cannot summon an array of honest testifiers

about  all  stages  of  this  person's  life,  you  choose  a  particular  domain,  educational

achievements. You focus on the rather sketchy description of education in their CV, and

you prepare  some pointed  questions  about  one of  them, on which  you have expert

knowledge. You are proceeding on the assumption that if you begin with general bland

questions and then advance to sharp precise ones the person will begin with a confident

cluster  of  replies  and  then  retreat  to  confusion  and  obvious  obfuscation  if  the  first

hypothesis is correct, and become more and more focused if the second.

There are similarities to the three main elements of the pupal stage of science. There is

the progress from general suspicion to more detailed hypothesis, in this case from a

vague imputation of evasion to a hypothesis about qualifications. There is the exploration

of a contrasting pair of ways of working out the idea in more detail, as a way of getting a

confirmation or refutation. And there is the temporary adoption of a possible mechanism

in a possible application in order to make an experiment possible. Last of all, there is

creating a situation where particular events may indicate which of these two hypotheses
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is more likely. All three suggest a profitable strategy which has widespread applications

when we want to set up an information-rich situation. 

interruption:  statistical models and the sources of probabilities

I interrupt the sequence of metamorphoses for some remarks about statistical models

and probability. The concept of probability plays a central role in many, probably most,

hypothesis tests, especially in the form of likelihood, and especially especially in the form

of comparative likelihood. (The roles of prior probabilities of theories and of items of

evidence are more contested.) It is hard to see how we could function without it. But

where do the probabilities used in hypothesis testing come from?

Most frequently from statistical models, so usually a class of distributions and a range of

parameters. Sometimes the model is nonparametric, when the distribution is specifically

fitted to the situation. The choice of distribution and parameter tends to be made on the

basis of a rough sense of what is going on plus statistics of existing populations. Again

agricultural and medical hypotheses are an example. The distribution of the quantity of

interest is usually Normal,  by extrapolation from the untreated population, and since

there are many independent sources of variation from one case to another a Normal

distribution makes sense, appealing to the central limit theorem. So in the simplest cases

one associates the null  hypothesis "nothing special going on here" with a Normal (or

polynomial) distribution with mean and variance as in the population sample, and one

associates the hypothesis that the treatment has an effect with a similar distribution but
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a greater mean. Somewhat more probing but still rather schematic considerations will

lead to other families of distribution.

Once  the  model  is  determined,  or  at  any  rate  decided  on,  there  are  rich  enough

probabilities to define the likelihoods. So from that point on the experimenter does not

have to think where they come from, and in particular can avoid grappling with thorny

issues about the nature of probability. These issues are themselves avoided if we take a

particular attitude to the models, especially if they are fleshed out with a description of

the causal processes. I shall call this the Neyman attitude.63   

To describe the attitude take the model to consist of an infinite population of individuals

with a very limited number of attributes, where the proportions with each attribute are as

the hypothesis or the statistics of the actual population would suggest. This is clearly a

model, a simplified abstract structure, rather than a description of the physical facts. The

infinite cardinalities are no problem since we are dealing with an abstract, essentially

mathematical, structure. And while proportions of infinite sets are problematic, the limits

of many sequences will be well-defined. Worries about sequences that do not converge to

limits and about selections and rearrangements from sequences that do not behave in

comfortable ways are irrelevant. The attributes that define the sequences are chosen so

that they correspond to real properties of the physical system being modelled as related

by the causal features of that system. For example we can model a large number of

throws of a fair die with a model in which it is thrown an infinite number of times. The

proportion of 2s to evens will approach 1/3. A straightforward way of making the model

63 Neyman (1957), (1990). See also Strevens (2011), I am sure this is not the application Strevens had in 
mind. 
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mimic and extend the probabilistic aspects of a physical  system would be to build it

around a random number generator, so that it would in effect incorporate a collection of

versions of each probability-governed sequence.64 The price, however, is that the model

must itself be abstract and contain no more structure than is specified, and at the same

time correspond to the physical workings of the system.

This requirement of correspondence to the physical system constrains the probabilities. It

rules  out  probabilities  that  are  simply  degrees  of  belief.  For  these  need  have  no

connection with the actual workings of a physical system. And if they are intended to

represent its workings but do so inaccurately, then to the extent that they differ from the

actual tendencies of the system they are defective, though the experimenter using them

may not know this. Moreover if we link them to mediating models saying how the more

general  features  of  a  hypothesis  connect  with  a  particular  class  of  phenomena  the

obstacles  to  such  purely  methodological  probabilities  become  greater.  The  opinions

generating the probabilities would have to be manufactured for this particular purpose. I

cannot see what the basis for the manufacture would be except for some version of of

the attitude that probability measures how often an event would occur if the process

generating it were indefinitely repeated. (The wording is deliberately vague.65)

We are often or typically comparing two hypotheses. Then the likelihoods of each are

given by each itself, with a lot of help from the statistical model. The aim is to reveal

which is nearer to the truth. Of course, but nearness to the truth can be understood in

64 The result would be like a model for a modal logic, with a set of first order models for each satisfiable 
sentence bundled together by means of an accessibility relation. To fit standard accounts of probability 
accessibility would be an equivalence relation and the result would be rather S5-like, but I wonder 
whether a more general approach, with milder conditions on accessibility, would be profitable.

65 For reasons to keep things open see Hájek (2009). One reason for being notably cagey about probability, 
besides the difficulty of any other course, is to balance the lack of consensus about possibility.
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various  ways.  The  direct  link  to  it  is  through  these  probabilities.  But  there  is  a

complication. The link will be weaker the less accurate the probabilities are, and since the

hypotheses are typically incompatible we know that at least one of them is wrong, and

unless the probabilities they supply are different there will be no test. So there is some

suspicion over them. Since we are using both distributions, we are condemned to using

at least one faulty one. This will push us in the direction of smoothness of fit with the

data rather than correctness of explanation, which becomes harder to justify as a means

to truth the more remote the link between the hypothesized processes and the facts

becomes. It is pretty plausible for a low level data summary and much less plausible for

a  complex  causal  explanation.  A  minimal  requirement  is  that  greater  probability

correspond to greater possibility,  in the sense of nearness to actuality. Unless this is

satisfied there is little connection between probability and what is more and less prone to

occur, and the procedure is hollow. 66

A natural form for this minimal requirement to take is as a comparison of likelihood tests.

Let us say that one test comparing H1 to H2 is  better than another when it gives H1 a

higher probability than H2 when H1  is true if (H1 or H2 and not (H1 and H2)) is. This will

automatically make a test that prefers a true hypothesis on the basis of its probability

better than one that rejects it in favour of a false one. The requirement will also fault

many tests  that  are  susceptible  to  overfitting,  giving  disproportionate  weight  to  tiny

details in the data that can easily be produced by random fluctuations. An overfitting test

might for example prefer a convoluted squiggle over a straight line passing very near to

a large number of data points but not going precisely through many of them. If  the

underlying causal principles are linear then we will want the test to prefer a hypothesis

66 Strevens (2013) gives a careful and technical formulation of one such condition.
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giving a straight line over one giving such a squiggle.67 This will be so not only when the

first  hypothesis  is  true  and the  second false  but  also  and more  generally  when the

nearest world in which the first holds is nearer than the nearest for the second. 

This requirement is obviously externalist, in the sense that it depends on what is actually

true and how possible something could be, rather than what a reasonable and adequately

informed person might think and do. We need criteria of both kinds and of course we try

to bring them together. Rules such as David Lewis's principal principle are designed to

take us in this direction. There could more generally be a relation of betterness between

probability assignments which prioritized their congruence with degrees of possibility. But

the immediate focus is preference between theories, where the concern with truth is

paramount, and probability is used for a wide variety of purposes. The topic will return

when we discuss the severity of tests later in this chapter. (I am using this section to

separate the discussion of appropriate probabilities from that of theory-acceptance and

that of severity partly because they should be clearly separated, and partly because the

content of this section is more relevant to the previous one than to the next.)

larva to adult

When a hypothesis has survived a series of tests against variants and rivals, there is still

a question of whether it should become part of accepted scientific doctrine. The tests

may not be enough to establish this, for a number of reasons. For all its success with the

data, the hypothesis may not have been tested against some relevant rivals, perhaps

because no one has been able to devise suitable experiments. (Experiments have failed

67  Forster and Sober (1994) 
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to find real  processes and entities because they were mistaken about how to detect

them.68) It may not fit nicely with long-established and well confirmed theories. The tests

in the series although individually successful may undermine one another or reveal one

another  to  have very  little  force.  It  may simply  be  implausible.  (Basic  implausibility

obviously overlaps with tension with other longer-establiised theories and beliefs.)  And

when designing statistical models the data from existing populations is often not enough;

for example we need to anticipate how large an effect a novel factor may produce if it

exists.

The most interesting aspect to a comprehensive theory may rest on the way it unifies

more detailed experimentally supported suggestions although it is not easy to test it by

experiment directly. The quark model of hadrons is an example, and outside science the

picture of the mind as integrating beliefs, desires, and feelings is central to our social

attitudes but is hard to test as a whole. So a complicated and delicate basis for accepting

or rejecting a proposed addition to received wisdom is how it combines with other more

constrained  results  as  parts  of  a  comprehensive  account  of  a  range  of  phenomena.

Having mentioned this I am going to say very little more about it.

All of these are reasons for wanting to assess one piece of theory from the point of view

of another. They require the force of their credentials to be compared. Much of the time

this is a purely intellectual process, but sometimes properly experimental considerations

are relevant. They apply when the results of an experiment need a lot of interpretation to

provide evidence about a theory. The detection of gravitational waves is an example. The

68 Galison (1987) gives the example of Maxwell’s attempts to see whether the carriers of 
electrical charge have inertia, which failed because he misunderstood the range to look in.
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bare data could be understood many ways in the light of various actual and possible

physical theories, but assuming that general relativity is probably correct, the data give a

high probability to the predicted distortions of space-time by the behaviour of massive

objects. The same could be said of routine interpretations of MRI output, and for that

matter of a great number of imaging studies where a sophisticated diagnosis is required

to get the image from the output of the apparatus.

An  additional  and  perhaps  flimsier  reason  is  to  give  information  about  whether  an

interesting idea (a pupa) is worth testing at all. The probability of the idea given a well-

established theory can be helpful. (Except when the idea concerns how the established

theory could be fundamentally wrong!) 

The aspect of these theory-presupposing tests relevant to this section is their essential

use of prior probabilities. We need to factor in what are more and less likely explanations

of the data, and this has to build on estimates of how plausible these explanations are

before the experiment, so prior probabilities. This does not have to be full-scale classic

Bayesianism, though that would do the job. The prior probabilities can come from some

other  source  than  degrees  of  one  person's  belief,  and  in  fact  in  much  of  statistics

"objective" Bayesian methods are not degrees of anyone's belief. They do not have to be

numerically  precise,  for  many  purposes.  And  for  turning  experimental  results  into

evidence we do not need more than ratios of prior probabilities ("Bayes factors"). Then

we can evaluate the ratio of two hypotheses’ probability given common evidence as 

(H1|e) / P(H2|e) = P(e|H1)P(H1) / P(e|H2)P(H2) 
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which is the likelihood ratio weighted by prior probabilities. This is usually enough to say

which one is better supported by this particular experiment, and if you have a lot of faith

in  the  numbers  by  how much.  Besides  likelihoods  it  needs prior  probabilities  of  the

hypotheses,  but  not  of  the  evidence.  (Which  is  just  as  well  as  this  is  notoriously

problematic.69   

The evaluative strategy at this final stage can be taken as the culmination of a series

where  each  stage  provides  material  for  the  next.  It  starts  with  a  single  hypothesis

compared  to  the  results  of  chance,  which  then  passes  through  tests  against  an

alternative in terms of comparative likelihood, and now to evaluation in comparison with

a large range of  alternatives (ideally,  but a crazy ambition,  every other  possibility  a

person can conceive). As the series progresses the conception of probability changes,

from something like ideal  frequency in  the early  stages to something like degree of

confidence in the later stages. The last stage is also the most demanding, in that it takes

the most into account and requires an organized way of doing this. 

The series has dangers. One danger is circularity. A false hypothesis can be confirmed

because of its agreement with strongly held background theory. Another danger is bloat.

Suppose that e would be explained both by a rich and complicated assumption H1 and by

a simpler more economical  part  of  H1,  H2.  P(e|H1)  will  be the same as P(e|H2),  and

although P(H1) will not be greater than P(H2) they will not be very different because they

are both novel and, let us say, there are no theoretical reasons to be suspicious of the

added  content  in  H1 besides  its  irrelevance  to  the  evidence.  (In  the  terminology  of

chapter 1, H2 will come closer to tracking the evidence than H1 does.) As a result P(H1|e)

69 Hawthorne (2005).
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will  be at most slightly less than P(H2|e).70 The evidence does not discriminate them

although it is the more economical theory that does the explanatory work. It is as if the

mythical apple falling on Newton's head confirmed general relativity.

It might seem that comparative likelihood has the same problem, since the likelihood of

the evidence given both theories will be the same. But there is a difference. The powerful

H1 and the economical H2 are unlikely to be chosen as alternatives to one another, and

the choice of alternatives is not itself a matter of comparative evidential support. The fact

that it is not shows that the objective severity of a test, the topic of the next section,

depends on many features of the context in which a test occurs on a particular occasion.

This is an important difference between evaluating tests probabilistically and evaluating

them objectively/modally. 

Moreover if S is the additional content of H1 over H2 — H1 is equivalent to H2 & S — then

the likelihood of E on H1 is the same as its likelihood on H1 & ~S, so that there is an

alternative to H1 that is not excluded, diminishing the support for H1. Issues about bloat

and circularity recur in the final chapter of this book.

There are many pre-scientific anticipations of taking prior probabilities into account. For

just  one example when evaluating the trustworthiness of  two people who have both

given rough predictions of an event that you have now observed, you consider both how

well their predictions fit the event and how trustworthy you took them to be before this

experience. It can take a lot of uncomfortable evidence to overcome the greater trust

you have in some people than in others. But note that you would have taken less account

70 van Fraassen (1983).
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of your earlier opinions if instead of saying "what do I think now?" you had framed your

thinking as a test "let’s see who is more believable on this point". This is the greater

weight  that  prior  probabilities  have  at  later  stages  of  the  sequence.  There  are  also

perceptual cases, as when you tell the optometrist "Looks like an A" although it seems to

you most like the Cyrillic  Я, which you do not expect to find on the eye chart. It is

interesting  that  both  examples,  and  others  making  the  same  point,  concern  the

evaluation of sources of information. Their relevance, then, is more to the solidity or

robustness  of  evidence  than  to  the  support  that  an  item  of  that  kind  gives  to  a

hypothesis.

severe tests

A hypothesis can pass a test, perhaps in contrast to an alternative, that is intuitively very

easy to pass. It might be a significance test with a very permissive (high) confidence

limit,  or  at  the other  extreme it  might  be a test  considering prior  probabilities  of  a

hypothesis with very high probability in contrast to one with a very low probability  So it

would be attractive to take the severity of a test into account when considering how

much support it gives to a hypothesis. But what is severity?

The  sharpest  and  most  influential  contemporary  discussions  of  severity  are  Deborah

Mayo's.  In  a  series  of  contributions  she  has  honed  and  defended  the  idea  that  a

statistical  test  should  be  hard  to  pass  if  the  result  is  to  count  as  evidence  for  a

hypothesis. She argues that this is a unifying theme running through healthy applications

of  a  number  of  otherwise  different  statistical  methods  and  distinguishing  them from
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perverse applications. In fact, the subtitle of her latest book (Mayo 2018) is "how to get

beyond the statistics wars". In that book she states a weaker and a stronger version of

her  motivating  idea.  On the  weaker  version  severity  is  a  necessary  requirement  for

evidence 

One does not have evidence for a claim if nothing has been done to rule out ways

the claim may be false.71  

(I take the "nothing" here as rhetorical. We can understand the point to be that to the

extent that little has been done that might lead to the rejection of the claim, evidence for

it has not been produced.)

On the stronger version severity is also a sufficient condition:

If [a claim] C passes a test that was highly capable of finding flaws or discrepancies

from C, and yet none or few are found, then the passing result ... is evidence for C. 72

Both requirements are very plausible and appealing. My concern is with the interpretation

of "has been done" and “may be” in the weaker version and "capable" in the stronger

version. The issue is counterfactual versus probabilistic formulations. Elsewhere, Mayo

gives a rough formulation as “before regarding a passing result as genuine evidence for

the correctness of a given claim or hypothesis H, it does not suffice to merely survive a

test;  such  survival  must  be  something  that  is  very  d!fIicult  to  achieve  if  in  fact  H

deviates  from  what  is  truly  the  case”.73 And  she  frequently  gives  counterfactual

considerations to motivate her use of the statistical criteria. But the real work is done in

terms of probabilities. Though she does not say this explicitly the strategy seems to be to

understand possible situations in terms of the data produced in them and hence what the

71  Mayo (2018) page 5.
72  Mayo (2018) page 14.
73  Mayo (2005) page 97.
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verdict a test would have had in that situation by plugging in that hypothetical data into

the calculations that were actually used74. But the basic machinery is statistical, so the

emphasis is on how often the same formal method would go right or wrong in other uses,

rather than how easily it could have gone right or wrong in a particular situation75. 

There is a lot here for me to agree with, with the emphasis on subjecting hypotheses to

tests which reveal restrictive conditions under which they would give wrong verdicts. I

have some doubts about whether Mayo's apparatus does deliver what it is supposed to.

My doubts centre on four topics.

(A)  the source of  the probabilities. This  is  the biggest worry. Suppose that they are

wrong, and do not correspond to the frequencies that would show up in the long run and

with many cases? (And which would then be evident in retrospect.) The most likely cause

of this would be a misleading statistical model, based on a misapprehension about the

type of process generating the data. Suppose for example that the experimenter takes

the data to be governed by a binomial distribution when in fact the topic concerns a

hypergeometric  distribution,  or  even  one  that  is  a  combination  of  the  two,  because

replacement  of  individuals  after  trials  is  completely  or  somewhat  restricted.  But  the

experimenter has no way of knowing that this is the case, and similar systems follow the

Normal pattern. This would lead to incorrect analyses of the data. 

To deal with this worry while still keeping the actual force of evidence separate from the

reactions of experimenters, one might impose conditions of predictive accuracy on the

74 This approach to counterfactuals has a lot in common with that of Judea Pearl. See Pearl (2000), chapter 
7.  

75 This is rarely made explicit in her writings. The nearest I know is excursion 6 of Mayo (2018). A telling 
footnote is number 2 on page 429, distancing herself from the standard semantics for counterfactuals.
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probability assignments used in analysing an experiment. Instead of tackling the issue

this way, in the next section I shall describe criteria that apply to the whole structure of a

test.

(B) Non-procedural features of the employment of a test. Suppose that the very fact that

the test was used is related to its truth? Suppose for example that a very tolerant type of

test is habitually used by a very scrupulous and painstaking tribe of scientists, who have

strong  inhibitions  against  formulating  and  testing  anything  suggestive  of  loose

conjecture. (They may have compensating methodological skills, or simply share a sharp

nose for truth.76) When they apply their tolerant tests those that pass will usually be true.

If a hypothesis is false then it is unlikely to be tested and pass. But this is not because of

the virtues of the test but that of the scientists. (This point may be reminiscent of the

issues about causal  versus evidential  decision theory. Also of  the distinction between

epistemic virtues and epistemic methods. It is related to the tangled question of causal

inference, the topic of the next chapter.)   

(C)  error/ignorance  We  aim  at  a  balance  between  error  avoidance  and  ignorance

avoidance, or the closely related distinction between type I and type II errors, because

we have other aims for our inquiries besides accumulating knowledge for its own sake.

But  standard  experimental  method puts  ideas  through the  gauntlet  from preliminary

evaluation to final exceptions with both types of consideration in mind. So the tests we

are assessing for falsity-prevention are also the ones we rely on to give information we

76 A saying attributed to Quine runs "the universe is not the university", suggesting that the divisions 
between the different kinds of inquiry are more sociological than objective. No doubt this is frequently 
correct, but the possibility remains that in some cases an inexplicit tradition determining which kinds of 
conjecture are worth pursuing, based on an inductive awareness of what has succeeded and what has led
nowhere, is accessible within a subject area and transmitted by training in it.
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need in practice. And even if bare knowledge is the aim we may want results that will

guide us in devising experiments that will get leverage on further questions. So one test

might be less severe than another but more desirable. This would only happen with fairly

severe tests and suggests that they might be  too severe for other purposes. For this

reason  one  might  prefer  to  keep  criteria  of  severity  and  criteria  leading  to  theory

acceptance separate. And one might be attracted to strategies like the metamorphosis

one described earlier in this chapter, where different degrees of severity are suitable at

different stages.

(D)  features  of  the  experimental  situation. This  is  the  smallest  worry.  Suppose  that

someone applies a very weak test to data that is in intuitively strong conformity with a

hypothesis. (It might concern the tendencies of a random system such as a coin toss or

the role of a tie or a roulette wheel, and they may be willing to endorse a conclusion that

two thirds of the cases conformed to although on this occasion 99 out of 100 do.) Then

the test result can provide only weak support for the hypothesis on a Mayo-like criterion

although the data itself is strongly supportive.

The opposite is also possible: data of middling strength and an inappropriately severe

test. Then a hypothesis could be rejected although there is at least enough evidence to

move it through one of the early stages of evaluation.

These cases are neighbours of cases where a foible or irrationality of an experimenter

leads them to accept or reject a hypothesis on the basis of an inadequate test. Then it
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may be that a different experimenter would have got to a different conclusion on the

basis of the same data. 

Several themes run through these worries: the often non-ideal nature or situation of the

experimenter, the possibility that an experiment may be badly constructed or interpreted,

and the possibility  of  unknown errors  lying behind the data collection.  These are all

"philosophical" in that they invite us to revise the borders of our terminology and to think

hard about what intellectual device we use for what purpose. 

comparative causal severity

The severity of tests is a matter of degree. Some are more severe than others, and this

is  especially  important if  we think that tuning them to stages towards acceptance is

important. And in the present context it will be some sort of causal concept, relating to

the conditions which would have led to an opposite result. But causation is not a directly

quantitative  notion.77 This  suggests  building  in  gradations  by  defining  a  comparative

concept where one test as used on a particular occasion is more stringent than another.

Analogues of Mayo's definition would feature relations between pairs of tests pairs of

hypotheses, and evidence, where each test would choose one of the hypotheses on the

basis of the evidence (alone), produced in a particular experiment and analysed by a

particular person on a particular occasion using the probabilities that the person actually

77 Indirect quantitative aspects of causation are size of effect and probability of effect.
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did use. The tests and hypotheses, however, are to be thought of as abstract objects, the

ones that were actually used, and unchanged in other possible situations. 

It  is  not  hard  to  specify  a  relation  of  this  kind  that  makes  a  stark  contrast  with  a

probabilistic definition and gives the intended results in many cases. Define test T1 is

actually sharper than test T2 when one of them, Ti, was used and chose one of H1 and  H2

over the other, using the probabilities that the person actually used and while T1 put or

would have put the two hypotheses in different pass/fail categories the other test either

put them in the same category or reversed T1's categorization, and the hypothesis that T1

chose is nearer to actuality than the hypothesis that the other test chose or would have

chosen (if used by that person with their probabilities on that occasion).

This is just one of a family of relations that can be defined starting with open sentences

of  the  form "Ti  puts  H1 and  H2 in  different  categories  on  the  basis  of  e"  and  then

combining them with modal and Boolean connectives and quantifiers while specifying

which aspects are to be held constant over one possible situation to another and which to

vary in accordance with the choices the person would have made. Actual sharpness,

though,  makes  a  very  stark  difference  with  probability-based  criteria  of  stringency

(although  evaluating  tests  which  use  probabilities)  and  meets  the  worries  that  I

expressed about Mayo's formulation. In particular it downgrades tests which would give

wrong  results  —  choosing  hypotheses  that  are  further  from  actuality  than  their

alternatives — when used with the probabilities that the person is inclined to use.
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The modal version also has the virtue of advertising the difficulty of knowing when it

applies. It does not make the false presupposition that the probabilities one has used

(and other crucial aspects of the test) are as they should be. On the other hand the

modal version supports no such illusion. It is clear from its formulation that accurate

probabilities used in a context where they will pick out the possibilities whose truth needs

the least variation on the way things actually are.

The modal version also has transparent disadvantages. It is hard, sometimes impossible,

to know which test has most actual discrimination. I  do not think there is a definite

concept of the stringency (severity, difficulty) of a test for a definition to capture. It

depends on  what  you  are  going  to  use  it  for.  Three  important  considerations  about

experimentation influence one another: balancing between error and ignorance, severity

of test, and the placement of tests in sequences. How one wants to understand severity

will depend in part on the balance between error and ignorance (type I/type II) one is

aiming  at  and  the  way  that  one  places  particular  trials  in  a  sequence.  All  three

considerations will be addressed again in the next two chapters.
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chapter 5:  cause with and without the help of experiment 

This  chapter  is  longer  than  others.  That  should  not  be  surprising,  given  that  I  am

presenting a causal account of evidence while discussions both of saying what causation

is and of how we can support hypotheses about it are tangled and controversial.  My

discussion, moreover, covers a topic that is not much discussed, perhaps because it is

though to be unproblematic: the connection between experiments as causal processes

and inferences to causal conclusions. I shall argue that randomization plays a smaller

role than is usually supposed in explaining why experiment is especially important in

causal inference. The chapter divides into three parts: general considerations, accounts

of causal inference, and ways of bypassing experiment.

Part I, some general considerations

It is hard to establish causation, and a controlled experiment is usually the most effective

means. Consensus ends at that point. And rival accounts of the evidence for causation

are rarely explicit about what their target is. The reason is that defining causation in a

non-circular  way  is  extremely,  notoriously,  difficult.  Philosophical  attempts  to  define

causation usually reveal a range of causal relations of varying centrality. (And there are

just a few claims that there is no such relation, or that it is scientifically or practically

irrelevant.)  I  am not  going  to  give  anything  like  a  survey  of  standard  positions  on

confirming causal hypotheses. I am in no position to do that. Nor am I going to add to

the definitions of causation.78 I will however try to do something a little bit radical. The

project of this chapter is to make a case for the suggestion that the variety of ways of

extracting cause from data correspond to different aspects of causation itself, different

78  Allari and Russo (2014) is a wide-ranging and accessible treatment of accounts of causation.



113

ways of carving out coherent chunks from the large amorphous mass that can count as

generally  causal.  These  chunks  have  loose  correlations  with  different  uses  of  causal

hypotheses.  There  is  no  single  target  for  causal  inference  and  no  single  way  of

performing  it.  One  instance  of  this,  what  I  call  the  depth  of  causation,  will  recur

throughout the chapter. But I strongly suspect that there are other dimensions along

which similar points could be made.79 The picture can be put together in terms of the

development of causal hypotheses from claims about the direction and overall structure

of the causal links between several observable quantities to claims about the detailed

processes leading from one quantity to another, or to claims about the balance between

influences in different contexts.

Begin, for once, with pre-scientific belief. We have many opinions about what causes

what in everyday life, and a few of them are true. (An irony: causation has all the marks

of  a  common  sense  concept,  needing  refinement  and  likely  division  into  more  real

components before it is scientifically useful. But common sense is pretty inaccurate in

attributing it.) We arrive at many of them by the following method. We begin with broad

classes of pairs of events where producing one results in the other. If we want to get the

second  then  doing  the  first  is  often  effective.80 (There  are  causal  relations  between

individual  events  —  token  causation,  sometimes  also  called  event  causation  —  and

between kinds of events — type causation. The relation between the two is discussed at

the very end of this chapter.)

79 Three related candidates, each of which comes in degrees, are the degree of causation – Braham and van
Hees (2009) - the probability of the effect, and the size of the effect.

80 Woodward (2016 [a]).
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A warning is needed. Pairs of events that we see to be effects of a common cause, often

with scientific hindsight, can guide effective ways of acting, in normal circumstances. You

are a terrified passenger trying to control an airplane whose pilot has collapsed. You want

to maintain your distance from the ground and visibility is not good so you rely on the

altimeter. It works. You act as if maintaining the altimeter level causes the altitude to

stay constant. But it doesn't really. If you reset the altimeter this would have no effect on

your altitude. It's the other way around: constant altitude causes constant readings, via

unchanging atmospheric pressure. The noteworthy thing is not that we can be confused

about causation but that we can apply these backwards relationships successfully, even

when we know they are inaccurate. And for what comes later this chapter it is important

that understanding which event is a cause of  which and which events have common

causes matters most when the connection between them is variable. If you are flying on

an  irregular  boundary  between  the  desert  and  the  ocean  air  pressure  will  change

abruptly so that the policy of the terrified passenger may misfire.

Sometimes, too, we make something happen by controlling a class of  events that is

linked to what we want to achieve by the presence of a common cause. You want to

make someone smile  so  you act  in  a  way  that  makes  them laugh.  But  neither  the

laughter nor the smile is the cause of the other. They are common effects of happiness.

But you cannot know anything directly in terms of happiness so you guide your actions in

terms of a consequence of it in order to effect a different consequence. 

depth of causation, causes versus conditions
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There  is  a  basic  reason  why  actions  do  not  need  to  be  based  on  means-to-ends

causation. Causation comes in various depths. Given that altitude and air pressure are

related as they are at the time, changing the altimeter reading will be accompanied by

change  of  altitude.  But  in  a  situation  in  which  this  background  is  not  constant  the

connection does not hold. Then factors that change or could change the correlation have

to be taken into account.  The link between the altimeter reading and air pressure is

deeper than that between altitude and the altimeter reading. It  produces a situation

where the correlation can seem like one way causation, and for some purposes can be

successfully taken as causation. There are many examples, often not as transparent as

this one.  

Depth of causation will  play an important role in this chapter. The background is the

distinction between more and less fundamental laws (principles, regularities) of nature.

Unsupported objects on earth as it is accelerate downwards at 9.8 m/sec2, but this is a

consequence of fundamental facts about gravitation, which would be so even if the mass

of the earth were different. (We expect that these gravitational facts are themselves

consequences of yet more fundamental matters, though we do not understand what they

are.) The deeper principles underlying any scientific field that can be reduced to a more

basic one will give further examples. 

More and less fundamental natural processes generate possibilities that are more and

less easily obtained, nearer and further from actuality.  That ball  free-falling from the

tower of Pisa at 9.8m/sec2 is a near possibility, even if it does not happen. (All it takes is

for Galileo to change his mind.) On the other hand an object’s falling at 15m/sec2 is a
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much more distant possibility, requiring a different history in the formation of the earth

where it becomes more massive. Counterfactuals exploit the nearest possibilities where

their antecedents hold, so although they are intelligible with remote antecedents, when

the antecedent can hold in both nearer and more distant situations the counterfactual will

opt for the nearer one. If there had been an object falling at that spot at that time it

would have reached the ground in accordance with the 9.8m/sec2 rule.

Causation can also exploit both nearer and more remote possibilities. The formation of

the earth is a distant cause of the fall of a particular ball now. Things get complicated,

though, when a cause can happen with different outcomes in both an easily realized and

a more remote way. Consider an example. Due to a defect in its manufacture one leg

supporting a pinball machine is slightly longer than one on the other side, leading the

machine to tilt slightly to the right. A ball is shot into the machine and strikes bumper A.

As a result it strikes bumper B. But if the defect had not occurred the ball would have

struck  A  at  a  different  angle  and  so  would  instead  gone  onto  to  strike  C.  So  the

manufacturing error is a distant cause of the ball's striking B. It causes the collision with

A to cause the collision with B and if it had not occurred the A collision would not have

caused the B collision. The moral is that going back a stage in the chain of causation can

reorganize the causal connections from that point on.81 (Diagram below, where paths

exclusive to the second trajectory are in red.))

manufacturing error
   yes         no
     ↙ ↘       ↙    ↘  
    A     X
       ↘   ↙    ↘
Z   B     C   Y

81  Someone might object that the situation cannot really occur. But pinballs do take different paths 
depending on where they come from before striking a bumper.
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        ↙↘                 
                  D  W    

There are familiar cases of this phenomenon. This application of the antibiotic causes the

recovery of health. But if the antibiotic had been applied too often it would not have been

a cause of a recovery. The influence that changes existing causal patterns need not be a

variation  on  an actual  cause.  The presence  of  the  virus  causes  the  fever,  but  if  an

inoculation had occurred it would not have. Intuitively deeper causes are less susceptible

to this kind of reversal. 

In this example there is an element of indeterminism (which can be due simply to the

granularity of the description) which leads to another feature. Following the paths further

we see that A is a (potential) cause of D and the Lewisian not-not characteristic 

applies — if not A then not D — on the nearer paths. But this is not so on the less near

ones  (in  red).  This  additional  sign  that  including  deeper  causes  can  scramble  the

arrangement  of  connections  may  also  ground  a  suspicion  that  there  are  several

connections between events going under the loose label of "causation".82   

The relation between X, Y, and C illustrates an important point. When additional causes

are introduced quantities that would have had an unmotivated correlation (C and Y)

before the expanded picture are now seen to be effects of a common cause (X).  

Statistics collected under non-experimental conditions will nearly always reflect surface

causes of the phenomena. What else are they likely to, given that these are the normal

82 It would be remarkable if causation remained a univocal matter when understood scientifically. Very few 
commonsense concepts do.
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influences? (You do not compile data on downward terrestrial acceleration by imposing a

variety of masses on the earth.) This creates differences in both aim and data between

purely observational and experimental research.

The events that I am classifying as deep causes are closely related to the conditions

under which a surface cause can have its normal effects. Releasing an object near the

surface of the earth causes it to accelerate downwards at the standard rate, given that

the earth has the mass that it has. But also striking a match causes it to light given that

there is oxygen and not too much humidity around. Such conditions are nearly always

necessary but not sufficient and nearly always have formed before the time that the

cause operates. Sometimes two conditions serve to maintain one another. Then there is

an equilibrium between them.83 Examples are the quantities related by the gas laws, by

Hooke's law connecting the extension and force of a spring, and those which are stable in

physiological homeostasis. Or for that matter the affection between two people. Neither

is a cause of the other in any sense that is exclusively one way.84 These will return later

in this chapter.

Issues  about  depth  of  causation  and  issues  about  evidence  come  together  when  a

correlation that is not directly causal gives support to a hypothesis. An example is when

someone's  having  a  high  temperature  is  evidence  that  they  will  show  the  other

symptoms of the flu. But neither temperature nor flu symptoms cause the other. Instead

they share a common cause, exposure to the influenza virus. This is so with the relatively

deep cause of viral  exposure. If  instead we think in terms of the shallower cause of

83 Wilson (2017) suggests that the contrast between causal and equilibrium quantities corresponds to that 
between elliptic and hyperbolic differential equations. The connection with succession versus simultaneity
is clear; that between surface and substratum is not.

84 In this connection see Andersen (2013). 
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having the flu, as we might when considering a single patient who we know has this

disease, then temperature is evidence of the disease and is caused by it. The general

phenomenon is  that  we take facts  that are causes or  effects  of  a  type  of  event  as

evidence for it, but since such direct causation often disappears when deeper causes are

considered the evidential connection then turns into a reliable correlation under current

conditions. It is a weaker connection, though, since having the flu accompanies a fever

with  more  exceptions  than  exposure  to  a  flu  virus  does.  This  makes  sense  on  an

objective understanding of evidence, since in terms of having a disease there is a more

fragile  basis  for  the  conditional-like  relations  that  constitute  knowledge  and  weaker

analogues of it than in terms of exposure to the infectious agent. I take this as support

for the objective account.

Mill and simple control

John Stuart Mill's application of his methods of similarity and difference to determining

cause, in  A System of Logic, is a precursor to contemporary sophisticated accounts of

causal  inference.  Mill  is  trying  to extend  his  account  of  inductive  reasoning  to  an

explanation of the power of experiment over cause in particular. In the crucial passage he

writes.

When we can produce a phenomenon artificially, we can take it, as it were, home

with us, and observe it in the midst of circumstances with which in all other respects

we are accurately acquainted. If we desire to know what are the effects of the cause

A, and are able to produce A by means at our disposal, we can generally determine

at our own discretion, so far as is compatible with the nature of the phenomenon A,

the whole  of  the circumstances which shall  be present along with it:  and thus,
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knowing exactly the simultaneous state of everything else which is within the reach

of A's influence, we have only to observe what alteration is made in that state by

the presence of A.85

Mill is clearly right about one thing. When we can produce an event we can often control

when and how we do so, so we are in a position to produce observations about what else

is present with its effects, and to that extent we have a combination of factors that will

normally produce the effects.  But behind this truth there are a number of  important

further points. 

The  simplest  problem  is  that  it  ignores  the  inevitable  statistical  dimension.  One  is

supposed to create the cause a few times under varied or rarefied conditions and see

what happens, noticing what is always or never there. But it is never really this neat.

There will be exceptions and intruders even when the true causal pair is tried. So one

needs to consider averages, curve fitting, and the like, and the all-important choice of a

sample. Then non-obvious ways of extracting a meaning enter. The meaning is rarely

conclusive or unambiguous.

One reason for this is that there are normally factors that one cannot control, has not

anticipated, or simply does not know about. What I referred to as insulation in chapter 2

gives a measure, but only that, of protection against these. (And one can only insulate

against what can be insulated against.) These confounding factors will have a greater

presence on some occasions of an experiment than others.

85   Mill (1843) chapter VII, section 3.
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A related problem is the lack of a clear and definite verdict on the direction of causation.

Suppose that the experiment produces A (turning on light A with switch S, say) to see if

it brings about B (light B illuminating) and B is then observed. A may cause B (the circuit

goes from S to A, and another switch sensitive to the light from A, turns on B). But it

may also be that the experiment has produced A only by producing B. (The circuit goes

to B, sensitivity to whose light turns on A.) Or it may have produced some common

cause C which has led to both A and B (S is linked to a hidden light C, to which both A

and B respond). The solution is to record the incidence of B without A. If such cases are

found, in sufficient numbers, then it is A that causes B rather than the other way round.

This would rule out a common cause also. (The sufficient numbers proviso is necessary,

because the causal connections could have exceptions or be easily blocked by intervening

extraneous  factors.)  In  the  ideal  case  one  could  infallibly  produce  A  which  would

frequently lead to B, but B was either impossible to produce except by producing A, or

there was an infallible way of producing B and it fairly often was not accompanied by A.

(Strangely,  this  is  most  effective  when there  is  a  little  noise  in  the system and the

causality occasionally fails.) In the absence of such data the direction of causation has to

be decided on the basis of temporal order, which does not always apply, or background

theory making processes leading in one direction more likely than in another, which may

not exist. 

Call this the "make it yourself" strategy. It fits necessary parts of sufficient conditions in

familiar situations — properties of a system which when removed make consequences no

longer apply as long as you do not change things very much. These are captured by

Mackie's classic INUS formulation. In Mackie's somewhat enigmatic formulation a cause
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is an insufficient but necessary part of an unnecessary but sufficient condition for the

effect.86 

The make it yourself strategy defines a relation between classes of things or events.

Sometimes this is all the causal depth that we need. You are treating an infection with an

over-the-counter medication. You know that the infection is microbial in origin, and that

it is the reason that you have a high-temperature. So you take your temperature and

swallow  the  medication  and  a  couple  of  hours  later  take  your  temperature  again.

Suppose it has declined. You know that degree of infection and increase in temperature

are  correlated,  so  that  the  reduction  in  temperature  is  a  strong  indicator  that  the

medication is having an effect. Next time you have an infection like this you will take it

more  readily.  You  do  not  need  to  know  what  the  detailed  connection  between  the

medication and the infection is. It is enough that there is a connection, and that using it

to choose a treatment is effective.

There are many cases where this is not enough, cases where the direction of causation

matters and time or more background is not going to determine it. You notice that when

you have a sore throat have a headache; should you take a throat lozenge or a Tylenol?

It might be that either causes the other or that they are both effects of a virus. The

centrepiece  of  experiment-based  ways  of  tackling  such  unguided  causal  issues  is

randomization.

86 Mackie (1965). Mackie refers to Mill several times, obviously having learned what is helpful and what is 
fragile there.
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randomized application

It will not be news to many that the standard scientific technique is now randomization,

with  the  hope  of  evading  these  problems.  Nearer  to  being  newsworthy  is  that

randomization has ambiguities and limits,  that there is some dispute about why it  is

effective, that there are precedents for it in pre-scientific life, and that there are aspects

of causation that it does not handle well. These illuminate one another.

Randomized application of a candidate cause (distinct from randomized selection of a

treatment  group,  discussed  in  chapter  3)  begins  with  applying  the  candidate  to  a

randomly produced selection from the population of interest. The statistics of the result

are compared to what happens in a control group which has not been exposed to it.87 (In

a variation, two possible causes are used and compared.) The idea is that, at least in an

unattainable idealized case, the application of the possible cause, or the determination of

which potential cause is applied, is correlated with nothing else, so that any correlations

with the possible effect can have no other basis.

This requires the experimenter to be completely in control of whether the treatment has

been applied. (Or at any rate to know with certainty when an attempt at applying it has

succeeded or failed.) It requires also that the experimenter know that nothing other than

experimentally applying it will result in its presence, in the context of the experiment. I

have the  impression  that  this  second requirement  is  not  often  explicit.  It  is  needed

because otherwise there could be other causal influences, particularly in the opposite

87 Fisher (1935), chs 9, 10, Lehmann and Romano (2005) ch 5, Wasserman (2004), Bennett (2013), 
Ruxton and Colegrave (2003 chapter 3).
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direction,  from the  effect  to  the  application,  which  would  give  the  illusion  that  the

application had caused the effect in this case.

Situations where the application of the cause is subject only to the random process are

unattainable and idealized because there are (nearly) always other determinants of the

application.  We  inject  a  medication  but  its  absorption  depends  on  features  of  the

patient's metabolism and the technique of injection. We try to keep these as uniform

between the two groups as possible, but we can never completely succeed and we can

never be sure how near to complete success we have got. As a result the causal aspect

of the conclusion is blind to many things. This is a greater danger in the face of additional

factors  that  we  do  not  know about,  because  we  cannot  compensate  for  anticipated

limitations  of  randomization  with  respect  to  the  hypotheses  and  subject  matter

concerned by designing the experiment to obstruct or control them. Or, to put it more

carefully, any such compensation will rely very heavily on background assumptions about

the kinds of  courses  likely  to  be operative,  and the  more  interesting or  original  the

hypotheses the greater the risk that these will introduce errors. So the comparison is

always implicitly between treatments under vaguely specified conditions, including the

"treatment" where one does nothing artificial. 

There are commonsense analogues to randomization.  One can apply  the conjectured

cause in an irregular way, as unlike a law-governed order as one can make it, and see

whether the conjectured effect follows in the same pattern. So for example one could see

whether  a  light  is  controlled  by  a  switch  by  flipping  the  switch  at  intervals  spaced

according  to  the  digits  of  π,  or  the  like.  Then  one  would  check  whether  the  light
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illuminated in the same way, perhaps according to some simple transformation of the

input pattern. If the light rarely goes on except when the switch is on, and one knows

that the switch comes on only by one's deliberately activating it, then the conclusion that

the switch controls the light is strongly suggested.

For very strict Bayesians, for whom probabilities are simply degrees of belief and thus are

not coupled to causes and effects in their objects, there is less of a direct reason why

randomized application should work. The assignment of individuals to the two classes can

still  be  unpredictable  and  not  correlated  with  various  extraneous  factors,  by

manufacturing a situation in which an unpredictable device such as a table of random

numbers is the sole factor in assigning individuals to the two groups. Then subjective

probabilities  will  carry  no  information  about  the  assignments.  In  effect,  this  is  the

approach of "objective" Bayesians, whose main concern is to legitimize the use of prior

probabilities  for  hypotheses  and  often  data.  The  question  remains  why  hard  core

Bayesians should have anything to do with causation in the first place, believing as they

do that everything relevant must be expressed in terms of degrees of belief.88   

It is important to note that the treatments or other suspected causes still have to be

applied physically. The application still has to be causal. Pills have to be presented and

swallowed, injections injected, chemicals mixed, heat applied. Once an individual is given

its random assignment that assignment still has to be carried out. If this were not so

something independent of the assignment would be the physical cause of the treatment

and this would not be excluded as a possible cause of the individuals exhibiting one effect

88 Sophisticated versions of the idea that causation is increase in probability are not decisively refuted. But 
the fit is not at all plausible when the probability in question is an attribute of a person.
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rather than the other. Suppose that we assigned individuals to one or the other group in

accordance with their colour, and then noticed that the pattern of assignments happened

to coincide with a table of random numbers. That would not count as random assignment

in the relevant sense. The randomness has to be part of a process that physically makes

one treatment or the other occur. Or suppose that we assigned objects to groups in some

arbitrary way, and simultaneously we activated a mechanism which searched through a

table of random members until it found one that corresponded to the assignment, then

presented this to the experimenters as the random assignment of the experiment. We

could arrange this so that the probability of any set of individuals was proportional to its

size, just like a random selection. But this too would not serve the purposes of real active

randomization either. Purely statistical considerations will not do it: there is no way of

magicking a causal fact out of facts about proportions and limits.89   

A consequence is that a randomizing act or process must complete and mingle with other

causal  influences on the  observed phenomena. So its  influence-limiting  power is  not

absolute. To stick with the standard example, if a drug is given by injection to a random

selection  of  individuals  the  influence-monopolizing  power  of  the  selection  is  still

constrained by the  fact  that  it  combines  and presupposes other  factors.  Unexpected

influences may sneak through in terms of their connections with the performance and

perception of the injection. Suppose that the experiment is supposed to show that the

active ingredient of the drug is a unidirectional cause of some aspect of the health of the

individuals. However there still can be common causes of that aspect and absorption or

metabolization of the ingredient. This could be clinically significant. Randomization, then,

89 Contrast this with the abstract version of Fisher’s conception in Greenland (2011). The overall topic is
causal  inference  but  the  necessary  conditions  for  instantiating  randomization  to  get  real  causal
conclusions are left implicit.
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is  not  a  magic  way  of  discriminating  cause  from correlation  but  a  source  of  fallible

evidence about which is present, to be weighed against evidence from other sources.

part II: causal inference 

I will compare four ways of getting conclusions about causation from data. Three of the

four are are meant to be used in conjunction with some input from experimental data.

from individuals to classes and partially back, potential outcomes 

The potential outcomes approach has been and possibly still is the dominant approach to

causal inference in applied statistics.90 As with all standard techniques from statistics for

getting  to  causal  conclusions,  the  target  is  a  relation  between  types  of  factors  or

attributes along the lines of "A is one of the causal reasons why B occurs". But it does

this on a detour through causal connections between particular events. There are two

core ideas. The first is is that if we have a sample from a population and if we knew of

each individual in it both whether if it were C it would be E (which is immediate, just part

of  the data,  if  in  fact  it  is  C) and whether if  it  were C it  would be not-E (which is

immediate if in fact it is not-E), then we would have evidence whether or not being C is a

cause of being E. It would be real evidence to the extent that the sample is typical, and

chosen in a way that does is independent of the possible causes to be investigated,  both

of which are encouraged by making the selection random.91 The second core idea is that

90 The basic suggestions come from Neyman (1924/1990) and Rubin (1974). A compendious exposition is
Imbens and Rubin (2015). A simple though limited exposition is chapter 16 of Wasserman (2004).  
91  When → is the ordinary English counterfactual as formalized in the dominant Lewis-Stalnaker way, and É
is the material conditional this is equivalent to ((c É (~c → ~e)) & (~c É (c → e)), where c is the conditions
under which the sample is taken. I am sure that taking them this way and confronting the formula with
intuitions about examples it would emerge as both too weak as too strong.
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we can get a good grasp of whether an individual would have had one attribute were

another attribute to apply to it by comparing it to others that are similar to it in other

respects  and  have  been  exposed  to  the  possible  cause.  Similar  things  will  behave

similarly. If other people of the same gender born in the same year and with the same

medical and social histories — or different stages of the same person — were E when

they were C, then it is a good bet that a person who never happened to be C would have

been E if they had been in that position. This section describes just enough about the

technique  to  fit  it  into  the  themes  of  this  chapter.  But  it  has  been  developed  into

something much more elaborate and comprehensive.92 

The  aim is  to  extract  a  verdict  about  causation  suggested  by  these  two ideas.  The

criterion is directed at situations where there is a treatment and a desired effect, and one

standard formulation compares averages of individuals in the sample with and without

the effect following the treatment. (Others are more explicitly probabilistic or work in

terms of ratios instead, but the effect is the same.) Consider the table below (which

because of the argument which follows has more categories than is usual).

T observed E observed potential T potential E

A yes yes

B yes no

C no no

D yes yes

E yes no

F no yes

G no yes

92 Dawid et. al. (2019) associates this idea with the difference between investigating whether one factor is a
cause of another and investigating whether a factor causes a known effects backspace. While that 
distinction not my immediate object it coheres with a theme of this chapter. This too was anticipated by 
Mill. Mill (1843) book III, ch.X sec. 7.
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Potential Treatment and Effect here mean that the individual would have presented the

corresponding observation if exposed to the relevant condition, in accordance with the

second idea. Then the sample gives evidence that the treatment is a cause of the effect

when there are more in category A and category D in the sample than there are in B and

D. The sample suggests that the treatment is not a cause of of the effect if these sizes

are reversed. On the other hand it suggests that the effect is a cause of the treatment

when there are more in A and B than there are in F and G. And the suggestion is that the

effect is not a cause of the treatment when this ordering is reversed.93 So there are

resources here for distinguishing between directions of causation. And we can take as

evidence  that  there  is  a  common  cause  at  work  when  either  both  of  the  negative

possibilities are false or all  four ordering-suggestions fail.94 (The latter disjunct would

occur very rarely, since even when there is a common cause noise in the sample is likely

to prevent strict equality.)

The distinctive feature of this approach is also its weakness. The vulnerability lies in 

extrapolating from the data in an actual sample to data that would have been presented 

if all the sampled objects had been exposed to the treatment and then observed. The 

most worrying element of this is the use of some actual objects as surrogates for others.

Which objects are good comparators for which others, in terms of how they would react 

to a treatment, is surely a contextual matter. A comparison between rats and people can 

be causally enlightening when the topic is the effect of drugs but not when it is reactions 

93 These are usually expressed in terms of averages, but since all the samples here are the same size sums 
are simpler.

94 When both positive ordering suggestions are true one possible interpretation is that T and E are in 
equilibrium, as mentioned earlier in this chapter. States in equilibrium are usually both effects of a 
common cause and causes of one another. Examples where both are true but the physical situation 
seems not one of equilibrium would be bad news for the account.
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to advertising. So the causal attributions that result from potential outcomes would best 

be labelled as causation relevant to a purpose. Such a labelling would have definite uses, 

but it suggests that the most suitable place for results we get by this method is at some 

particular point of theory-development and application.  

One special case is particularly enlightening. Experiments are usually conducted under 

artificial and often unnatural conditions. That is one reason why they can be revealing 

about the deeper causes of events. But the selection of subjects for an experiment is 

usually done outside the conditions of that experiment. Moreover good experimental 

method takes account of unknown influencing or interfering factors as well as known 

ones, and these are not available when paring objects up as representatives of each 

other's potentialities. That makes a mismatch. The technique was intended to be used 

when interventional experiment is not possible, and we now see reasons why its results 

may not be reliable within an experiment. The moral is that it is best confined to non-

experimental research. But there are limitations to the parts of nature that this can 

reach.

There is a definite resemblance here to theories of causation in terms of counterfactual

conditionals. The statistical use of material conditionals — "most" — is analogous to the

"variably strict" aspect of subjunctives — their dependence on what happens in a nearest

possible world. And the use of pairs of objects, only one of which has both been exposed

to the treatment and the presence or absence of the effect observed, is analogous to

once-lively discussions of counterparts in other possible worlds of actual individuals. On

the one hand the method is based on a way of simulating what would have happened in
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a particular  case.  But  on  the  other  hand its  results  do  not  entail  conclusions about

particular  cases.  The  most  we  could  get  would  be  probabilities.  But  there  would  be

counter-intuitive results. The probabilities would be for claims saying "if e had occurred

then f would have" where e and f are particular events. These would be a bit unorthodox

when  e  and  f  did  actually  occur.  And  they  would  run  afoul  of  the  large  body  of

counterexamples that have accumulated for simple forms of Lewis's not-not analysis,

concerning preemption, over-determination, and the like.95 I doubt that practitioners of

the method would be very bothered by these. The focus is on causal relations between

types of event, and these are largely unaffected by any peculiar consequences for token

events. On the other hand too many such consequences would suggest that the types

are not causally  fundamental,  not the groupings that would be found in  the laws of

nature, or alternatively that the language used for picking out individuals that can model

one another is inappropriate. In either case would give a warning sign that the method

had been applied in a potentially misleading way.

To sum this up, the factors that are both strengths and weaknesses of potential outcomes

are its inflexibility in the face of conditions of varying severity and its implicit use of

purpose-relative causal substitutions between different objects.

from cause plus correlation to more cause, causal modelling

Another technique for squeezing causal conclusions out of data is based on graphical

causal  models.  Causal  modelling  does  not  extract  causal  conclusions  from  purely

statistical data, except in some special cases, and in fact it is often accompanied by an

95 Straightforwardly in Lewis (1986), and with complications in Lewis (1996).
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insistence on the irreplaceability of causal thinking. Instead, the aim is to extend some

causal knowledge further, combining assumptions about causation in some domain with

data from the domain to give further causal conclusions. 

Graphical causal models are familiar to most philosophers interested in causation and

many  statisticians,  especially  those  who  appreciate  the  difficulty  of  getting  causal

conclusions from purely statistical  (proportional) evidence. I  shall  not give a detailed

exposition as some features need a lot of care and some formalism to state accurately,

though they will  be familiar to some readers and frustrate others. However excellent

expositions  are  available.96 They  give  a  way  of  representing  a  set  of  variables

representing objective quantities that can take a fixed range of values, causal relations

between these variables, represented graphically by arrows, and the degrees to which

variables affect one another, represented by functions from the range of one variable into

that  of  another.97 These  come  with  a  probability  distribution  that  determines  the

probability  of  variables'  taking  particular  values  in  terms  of  the  values  that  other

variables upstream along the arrows can take, and ultimately in terms of "exogenous"

inputs from processes that are not part of the model. There are a number of conditions

that the arrows,  the functions,  and the probability  distribution must satisfy.  The two

simplest are that there must be no closed cycles in the pattern and that the probability of

any variable taking a value is a function of the variables immediately upstream from it.

The technique comes with the assumption that causal relations between quantities can

be represented by models of this kind. 

96 Chapters 1 and 2 of Pearl (2000), Pearl, Glymour and Jewell (2016).
97 Of course the intellectual content of the technique could be separated from the diagrams. But in practice 

this is never done
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For present purposes, the important point is that if we are given a partial specification of

a causal model — some and sometimes none of the arrows and some or usually all of the

probabilities — then there will be a limited range of ways the model can be completed to

make a model satisfying the conditions.98 In particular some ways of filling in the causal

connections — putting heads on the arrows, turning them from bare correlations into

directed causal relations — will be incompatible with the probabilities, given the structure

that a causal model is taken to have. For example, if two variables A and B are both

correlated probabilistically with a third variable C but not correlated with each other, then

C cannot be a cause of A and B, since descendants of  a variable (variables causally

downstream from it) are correlated with it. Many of the restrictions on ways of filling in a

partial specification are, like this, ways of determining that one variable is not a cause of

another. They typically work by predicting correlations that would hold if one variable

were a cause of another; then if the correlation is not found the causal relation does not

hold. As a result they usually concern the opposite end of the graph from interventional

considerations, downstream rather than upstream. (The statistics themselves have to be

derived from samples in any of the usual ways. Notice the necessity in this of statistical

models, which as I have argued involve implicit causal assumptions.) There are some

surprising and subtle examples of the result. For example, the relation between smoking

and tar accumulation can help confirm that smoking is a cause of cancer.99 The more

interrelated factors are in play, the greater the clarity about their causal connections.100 

98   Glymour and Cooper (1999)  
99   Pearl, Glymour, and Jewell 2016, chapter 3, Pearl 2000, epilogue.
100  The process can get intricate; there is a computer program: Spirtes, Glymour, and Scheines (2001). 

(An obstacle here is that the current model searching software will not handle a variety of distributions.) 
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This is a novel and interesting approach, breaking with traditions in both statistics and

philosophy;  a  fruitful  middle  layer  of  analysis  between  two  phases  of  experimental

research, a nice empirical/conceptual/empirical sandwich.101 I have sniping criticisms and

a fundamental point.

Sniping: the graph-refining routines will not count any link as causal without a correlation

of their values; more generally they rely fundamentally on which variables are and are

not correlated. This will generate a tendency to ignore very slight causal connections,

unless the samples are very large, because minor correlations will often not show up in

them. But a correlation that is too small to emerge from the statistics as significant in a

limited domain may be much larger in an expanded domain, as the pinball  example

shows.102 And a correlation extracted by a suitably designed experiment may not be

apparent  from  non-experimental  observation.  This  may  diminish  the  force  of  the

technique as a substitute for experiment.

This  sets  up my greatest  concern about graphical  causal  models.  Some experiments

reveal causal facts concerning deeper layers of causation than can be produced without

characteristically  experimental  measures.  These  will  be  invisible  using  the  non-

experimental statistics that are essential to causal modelling. So some tension between

the output of the enterprise and the results of experiment is inevitable. That means that

the  modelling  technique  will  not  be  effective  in  basic  physics  or  other  sophisticated

sciences. To my mind this seriously diminishes its attractiveness. 

101  There are other ways besides the causal models approach of carrying out this general program. See 
Gopnik and others (2004). I shall not discuss them.

102  This is related to the freewheeling attack on the whole program in Freedman and Humphreys (1999).)
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The problem also has an impact on characterizing causes in terms of intervention.103 If

the intervention does not involve insulation and the like then the causes it picks out will

be shallow ones, useful for every day choice of actions and descriptions in everyday life.

On the other hand if it does involve these things then it will not pick out the ordinary

targets.  Since  the  statistics  needed  for  defining  the  correlations  are  likely  to  be

observational, the causes will be shallow, and only hints of underlying processes. They

are likely to reveal the causal  patterns that appear when causes are interacting and

swamping  one  another,  rather  than  those  that  are  brought  out  by  insulation  and

randomization.

A  two-stage  example  of  this  (although  the  pinball  machine  example  earlier  could

illustrate the point): getting malaria is correlated with living near standing water. Refer to

all standing water as swamp. If this is all we had to go by then it will be reasonable to

count swamp-nearness as a cause of the disease. So we will suppose that the causes

look like this:

 swamp-nearness    hygeine
             ↘         

     malaria  common cold 

A very rudimentary experiment subdivides swamp-nearness into with-mosquito-bite and

without-mosquito-bite. So we get the following, where swamp-nearness is not a cause of

malaria:

  hygiene  swamp-nearness      mosquito bite
                  

    common cold                      malaria

103  As in Woodward (2003) (2006) (2013) (2016).
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A more sophisticated experiment will show that only the bite of mosquitoes infected with

the  Plasmodium parasite is  correlated with getting malaria.  So we get the following,

where getting bitten is not by itself a cause:

hygiene  swamp-nearness infected mosquito bite non-infected mosquito bite 
                                  
    common cold                      malaria       itching 

Adding  antecedent  causes rearranges  the  connections  between factors.  But  now one

particular way this can happen emerges. The acquisition of a new concept, which is often

though certainly not exclusively the result of what experiment reveals, can bypass factors

that were thought to be causes. I would not regard any account of the epistemology of

causation as satisfactory unless it made space for this possibility.

After  pointing  out  essentially  this  feature  of  their  approach,  in  connection  with  a

treatment of token causation ("actual causation" in their terminology), Pearl and Howarth

write:

... the truth of every claim must be evaluated relative to a particular model of the

world; that is, our definition allows us to claim only that C causes E in a (particular

context  in  a)  particular  structural  model.  It  is  possible  to  construct  two  closely

related structural models such that C causes E in one and C does not cause E in the

other. Among other things, the modeler must decide which variables (events) to

reason about and which to leave in the background. We view this as a feature of our

model, not a bug. It moves the question of actual causality to the right arena—

debating which of two (or more) models of the world is a better representation of

those aspects of the world that one wishes to capture and reason about.104 

104  Howarth and Pearl (2005)
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This backs up my point. It points to the best application of the method, discussed below.

All I would add to it is a) that embedding models in larger models tends to turn causal

relations into effects of common causes, and b) that taking causal modelling as having an

intrinsically provisional quality undercuts some claims that it will give mechanical ways of

detecting causation in data.

Closely related to the worry about depth of causation is one about the homogeneity of

insulation and other controls. Suppose we have constructed a causal model on the basis

of  statistics  gathered  by  several  distinct  experiments,  discerning  the  correlations  of

different variables that the model aims to find causal connections between. Suppose also

that these experiments involve controlling for different possible irrelevant factors with

different degrees of effectiveness. Then there will  not be any uniform level of cause-

induced-correlation to which the arrows in the model correspond. Such a model is not

likely to give reliable results in practice.

stages towards causal conclusions

We begin by wondering whether two quantities are causally related, and if so how. So we

begin by collecting statistics, and apply tests for whether any correlations they suggest

are significant. Then really rudimentary criteria of causation such as temporal order, and

well established textbook-style theory will reduce the causal possibilities. These can be

further refined with more structural considerations, such as those provided by graphical

causal  models.  This  is  likely  to  be  most  effective  at  a  very  early  stage  where  very

minimal controls encourage the various sources of the data to be causally homogeneous.

With  a  refined  rough  draft  given  in  this  way  we  can  proceed  to  compare  pairs  of
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hypotheses,  both  with  GCMs  and  with  instrumental-variable-augmented  potential

outcomes. GCMs will have a particular role in filling in causal processes between the gaps

of individual causal relata. They cannot be self-sufficient in this, though, because this

task  relies  on  a  choice  of  appropriate  concepts  which  usually  have  to  come  from

fundamental  theory.105 And  evidence  about  which  causal  connections  will  be  most

significant  in  which  contexts,  for  example  relevance  an  intended  application  or  an

intended  medical  context,106 will  usually  need  particular  experimental  controls  —

insulation,  choice of  trigger  and sample,  focus of  randomization — suitable  to  those

contexts. Often at the end we have a theory of processes and mechanisms from which

we  can  get  causal  conclusions  but  which  does  not  in  itself  employ  the  concept  of

causality. It may even have anti-causal implications.

At the different stages of this typical development of a causal hypothesis the relation

between type  events  and token events  as  causal  relata  usually  changes.  Distinguish

three stages of causal theorizing. The first begins with supposed connections between

individual events and very small classes of events, trying to piece them together to get

means to a constrained list of ends. So the focus is on two-way induction between types

and tokens where  types are  small  collections  of  tokens.  The aim is  to  get  accurate

predictions of particular token cause/effect pairs. In a second stage we consider larger

types of potential causes and effects, typically against a background of particular not too

ambitious but roughly exception-free causal relations between small classes of particular

event. Reconciled to some degree of exception at the token level between causally paired

types. So a conclusion that one type causes another is not taken as entailing of any

105  Some processes need generalizations of the method that do not yet exist, though. For they concern 
continuous linkages between cause and effect.

106  Cartwright (2004), (2010)
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particular events belonging to the one that it will  belong to the other.  The aim is to

estimate the typical or average influence that one factor will have on others, as described

in the quotation from Pearl above. Event types  are then naturally understood as

broad  combinations  of  scientifically  significant  properties  and  physically

concrete individuals.

At these first two stages the emphasis is primarily on whether the type-to-

type causal relation holds between particular event types – although the

interpretation of event types in terms of event tokens is different at each.

At a third stage it shifts to how the causal connection is made. This largely

consists in breaking the role causal connections down into more detailed

causal  chains  — processes,  mechanisms — which can be understood in

terms of related physical theory. As suggested above causal language may

drop out at this point. So too may reliance on any kind of event type, since

many of the purposes of primitive causation can be served for the relevant

kinds  of  event  by  appeal  to  chains  are  influence  understood  in  the

appropriate way. (For a trivial example the motion of one solid body upon

impact  from  another  can  be  predicted  and  explained  in  terms  of  the

conservation of momentum, if necessary extended and combined to apply

to complex bodies.)
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The acyclic requirement, that there not be closed causal paths from an event eventually

back to itself, means different things at these three stages. At the first stage it can be

taken as a very simple constraints on patterns of causal relation between token events:

they cannot go around in loops. This can not be the interpretation at the second stage,

although it is best known here. For its main application is to rule out unwanted causal

patterns between correlated types of event. And individual links of the resulting causal

networks will very often relate types of event for which some pairs have a cause/effect

direction opposite to that of  the overall  network. (Injection of  an antibiotic generally

causes reduction of an infection, but particular cases of fever reduction can be among the

causes of injection, for example they increase confidence that the disease is properly

dealt with in this way.) So the constraint must mean something like "adequate estimates

of  the average effects  of  causes,  with the emphases and inclusions required for  the

purposes of the particular model being constructed, must be possible without including

factors causally antecedent to a variable in the estimate of its effects". This will certainly

not  be  satisfied  by  type  events  that  are  simple  collections  of  all  qualifying  tokens,

illustrating the point  that the evidential  assessment appropriate  to a stage of  causal

theorizing shapes the implicit ontology of the resultant hypotheses.

Part III: doing without experiment

instrumental variables and natural experiments

Sometimes the data available to us has  some of the power of experiment although an

experimental intervention would be impossible, or unethical. I shall first discuss the use
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of  instrumental  variables and the related topic  of  natural  experiments,  and then the

rather different case of astronomy.

In the instrumental variables technique we investigate whether one quantity is a cause of

another by finding a third quantity about which it is uncontroversial that it has a causal

relation to one of the two, could cause the other only through the first, and is caused by

neither.107 We can compare lung cancer rates in locations where cigarette taxes are at

different levels, on the assumption that taxation levels have no influence on lung cancer

and that people smoke (somewhat) less if it is more expensive.108 If we find less lung

cancer where cigarette taxes are higher then that is evidence for a causal connection. In

similar ways draft lottery numbers for US conscription, postal (zip) codes, and month of

birth have been used as instrumental variables in suitable contexts The causal relation is

often incomplete and partial, so that quite sophisticated data analysis is needed.109

The use of month of birth and postal codes as instrumental variables makes a connection

with randomization, since these are generally independent of many quantities that we

might investigate. The difference between living in a high and a low tax area is somewhat

like that between people made to smoke purely by experimental fiat. Neither is taken to

be  influenced  by  factors  that  normally  lead  people  to  smoke.  A  random element  is

introduced by comparing statistics for people whose postal code ended in an odd digit

and who smoke, with those for people whose postal code ended in an even digit and who

do not smoke. There is also a resemblance to the potential outcomes approach: with a

107 Sussman and Hayward (2010). Pearl (2000) chapter 7 gives an abstract definition, but ignores what is 
for me an essential question, how one can know that a variable satisfies the definition, though he 
partially addresses the issue in his chapter 8.)

108 Leigh and Schembri (2004).
109 Humphreys, Blodgett, and Wagner (2014).
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large sample we can expect that most profiles occurring in either group will also occur in

the other.

In "Mendelian randomization", an interesting development of instrumental variables, the

connection with experimental randomization is explicit.110 This technique applies when

there is a correlation between a particular trait and the occurrence of some disease, say.

A sample of individuals with a genetic predisposition to the trait is examined. If the trait

is  a  cause  of  the  disease  then  it  will  occur  more  often  in  individuals  with  the

predisposition than in the general population. If not, the correlation runs in the opposite

direction or is due to a common cause. It is essential here that genes coding for different

traits are independent of one another, so that the proportion of genetic types is otherwise

randomly distributed.

Instrumental  variables are a clever idea and in theory the technique can do what it

claims to, if the assumptions about causal independence and about the variety of the

sampled population are correct. But in particular cases it can be contested whether the

variables in question are really as causally inert as required. One sign that they might not

be is that investigations of the same issue using different instrumental variables often

come  up  with  rather  different  answers.  The  claim  that  something  is  a  suitable

instrumental  variable,  or  that  it  has  the  independence  needed  in  a  substitute  for

randomization,  must  itself  be  justified,  and  while  ideally  this  would  be  done  by

experiment it is usually based on prior theory or what seems evident.111 In some versions

of the technique, such as Mendelian randomization, there is a profound dependence on

110 Davey Smith and Ebrahim 2003.
111  Rosenzweig and Wolpin (2000) is an influential analysis expressing scepticism about the causal 

inertness of some uses of instrumental variables in economics.
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prior theory. This can produce a greater danger of circularity than in experiment strictly

construed. It can also produce very strong evidence, if the prior theory is assumed. So

there is a real possibility of strong evidence that is not robust112.

Another  technique  is  "natural  experiments".  In  biology  a  lot  of  attention  is  paid  to

evolution  on  islands  and  in  isolated  lakes,  as  substitute  for  experiments  isolating  a

species from competition, identifying selective pressures on it, and then observing how it

evolves  ("bottle  experiments").113 A  contrived  experiment  with  the  evolution  of  a

multicellular organism would require enormous capacity to control all the variables, and

often would take thousands of years. Darwin was very fortunate in coming across the

Galapagos Islands.

Natural experiments along these lines are essential in biology, especially in evolutionary

biology. Determining that a situation is a natural experiment, that particular influences

operate and other ones do not, requires prior theory. It can be very unproblematic. It is

hardly  dangerous  to  assume  that  few  land  animals  can  swim  across  thousands  of

kilometres of ocean. (Though it has been suggested that snails can travel long distances

in the stomachs of birds.)

Sometimes natural and contrived experiments are combined. Biologists have taken the

contents of lakes that have been isolated for millennia and transferred them to artificial

112  A “futuristic” development of the technique could give stronger evidence than simple experiment, with 
the danger of less robustness. It would ensure that all members of the two groups were genetically 
identical except for genes affecting the trait in question. With traditional randomization the traits are on 
average even over all groups but can vary wildly from sample to sample.

113  Schluter (2000), chapter 3, Fraser and Keddy (1997).
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ponds  in  their  laboratories  where  they  can  be  studied  under  controlled  conditions.

Cleverly discovered and artfully created controls can be continuous.114  

Natural  experiments  and  instrumental  variables  rely  on  assumptions  of  causal

independence.  The  experiment  does  not  reveal  what  it  claims  to  unless  the  ersatz

intervention really is parallel to what you would find in an ideally constructed experiment.

These assumptions have to come from fundamental theory or from other experiments.

The evidence is more solid if the basis is experimental. Otherwise, a mistaken causal

assumption may be perpetuated and spread wider. Sometimes fundamental theory can

make the link. In the next section I discuss how basic theory substitutes for experiment

in astronomy.

Besides these failings of self-sufficiency there are also limitations. We have to take the

experiment-substitutes as we find them. We cannot tune them to fit the hypotheses we

are testing, for example by giving individual human subjects precise degrees of smoke

and checking for susceptibility to lung cancer and heart disease.115 

astronomy 

Non-experimental evidence has its successes, and none greater than astronomy, where

we have accounts of many processes which stand up well to later investigation and where

experiment  is  generally  impossible.  We  cannot  move  stars.  When  we  change

astronomical theories it is usually to refine or enlarge them. (Cosmological theories might

114  Kawecki 2012.
115  Fine-grained descriptions of causal relata are a feature of Lewis's later theory (Lewis 2000).
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be exceptions.) Astronomy might seem to be an important counterexample to the special

role of experiment.

I think astronomy is a special case.  We should not expect it to generalize and we cannot

be sure that the happy situation will continue. 

the simplicity and regularity of the data   The locations of the stars as seen from the

earth are fixed; they do not change within a human lifespan. The motions of the planets

("wandering stars" one way or another in European languages, and for that matter in

Mandarin)  are  more  complicated,  but  not  hard  to  describe.  (It  is  explaining the

regularities  of  the  planets  that  is  harder.)  The  movements  of  comets  are  yet  more

intractable. Luckily the details of these were largely ignored until astronomy had gained

confirmation and power.116 

gravity   The movements of the planets are predictable, on a heliocentric model, by one

force  alone,  gravity.  Moreover  the  stable  pattern  is  predictable  to  a  good  first

approximation  simply  by  considering  two-body  gravitational  interactions  between  a

planet and the sun. The first gravitational account of the solar system was Newton's, and

his  methodology  involves  starting  with  planet/sun  forces  and  then  adding  more

complicated  interactions  only  as  needed.117 So  we  can  make  good  and  generally

irreversible  progress  by  the  technique  of  advancing  through  n-body  gravitational

interactions, increasing n only as required.

116  Fantasy: a metaphysical/political situation in which for astrological reasons the trajectories of comets
have to be predicted in detail, leading to the failure and abandonment of early astronomy.
117  Smith (2002), (2014).
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the universality of the physics   Developments in physics, testable by experiments on

earth, can be applied to the wider universe. Early physics and astronomy scaffold one

another, testing and lending support and prestige to one another. Since the effects of

gravity can be tested on earth, for example by the famous Cavendish experiment, the

stage is set for assumptions of continuity between terrestrial and universal forces. The

same is true of optics.118 Aristotle suggested the opposite: that sublunary and celestial

physics are different, and the realization that this was wrong gave a tremendous impetus

and freedom to early astronomy. We apply experimentally testable theories about nuclear

fusion to the composition and evolution of stars.  

Will astronomy continue to be so lucky? We cannot tell what developments in testable

fundamental physics there will be, or what phenomena will remain unexplained in spite of

all our efforts. But there are issues that have eluded us for a long time. The origin of the

moon, the reasons for the spacings of the orbits of the planets, the origins of comets:

these are all questions about the solar system which for which hypotheses have long

gone back and forth and only slowly stabilized, as they do in non-experimental science.

As for causal questions about the wider universe: we can now apply fundamental physics

to  many  of  them,  and  these  will  at  any  rate  reduce  the  number  of  sustainable

hypotheses. But many such questions demand fusions of general relativity and quantum

mechanics  that  are  delicate  and  uncertain.  Perhaps  the  dark  matter/dark  energy

conundrum will resist our best efforts. Perhaps there are irreducible forces and processes

that occur only at astronomical scales, where enormous energy is available, that could

118  Some non-optical astronomical instruments draw on much more recondite theory. See Shapere (1982) 
for the case of neutrinos in studies of the workings of stars. There are hi-tech ways of measuring anything: 
for gravity and thus the weight of the earth see Xu (2019)..



147

only be manipulatively tested with experiments that are unlikely to be available to our

species.119

The  obvious  comparison  is  with  economics.  Economics  has  played  with  a  series  of

candidates  for  the  role  of  physics,to  give  a  background that  makes  experiment  less

necessary. The theory of rational choice and game theory were early suggestions. Their

assumptions of perfect rationality proved worrying, and the emphasis now is more on

experimental  game  theory,  discovering  how  people  actually  behave  in  strategic

situations.120 Prospect theory, adapting rational choice to human limitations, was once

very appealing but seems to have lost  its  lustre.  Econometrics has lost  a lot  of  the

prestige that it  once had,  largely because it  is  lack of  controlled experiments  is  not

compensated for by accurate predictions.121 There is a vogue at the moment for neuro-

economics, basing predictions of choice on studies of the brain. It is too early to tell

whether it can fill the chosen role. But it is far from automatic that gives a substitute for

experiment in economics itself. The situation of economics is hardly a dismal prospect for

astronomy, but it would be a step down from its throne.

The conclusions from this  part  match those of  the previous two.  There are costs to

substituting  other  means  for  deliberate  experiment  to  confirm  hypotheses  about

causation. They are paid in loss of causal depth and in flexibility, the capacity to focus on

a  specific  aspect  of  the  situation  being  investigated.  The  loss  of  flexibility  is  more

119  Longair (2006)
120  Guala (2005)
121 Econometrics was a source of many ideas about testing causal hypotheses, such as instrumental 

variables, and is generally an area for great statistical sophistication. It is still an important source of 
techniques for handling very large amounts of data. 
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worrying the more that one takes causal concepts to vary in their connections with the

depth of underlying law and closely related to this the specificity of the contexts they are

applied to. And the greater the variety of the objective relations that masquerade under

a single everyday causal concept one takes there to be, the more important it will be that

there is no simple and uniform technique, such as those I have discussed aspire to being

or randomization as a mechanically effective element of experimentation, to force the

data to unambiguous conclusions. 
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chapter 7:  distributed knowledge 

Knowing is a form of doing. We accomplish a lot of knowledge, together with everything

else we do. And we do much of it together in complex shared and interacting ways. This

is  not  to  deny that there is  also an infinite  amount that we do not know. In many

domains — agriculture, building, science — knowledge involves shared and distributed

activity. (So you typically cannot say which individuals in a group did something; they did

it together.) The result of shared inquiry is a collective connection with the facts, and it is

inevitable that experiment, the clearest example of inquiring interaction with things, has

a central, if not exclusive, place in this.

The  aim  of  this  chapter  is  to  state  the  attitude  loosely  described  in  the  previous

paragraph more carefully. This will require saying enough about the teamwork involved in

carrying out and evaluating the results of experiments to show how it leads to knowledge

possessed by communities of scientists. Along the way there will be more "conceptual"

conclusions. Some of them concern why these matters are best described in terms of

knowledge rather than rational belief. Knowledge is intrinsically suited for sharing.

two kinds of cooperative inquiry

In inquiry as in other shared activities there are two patterns. At one extreme is simple

distribution of  time. Coworkers could do each other's tasks and have access to each

other's information. Two police officers who alternate playing good cop and bad cop, two

violinists in a quartet who change roles every other performance, you climbing the ladder
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while I hold it although for the next job it will be you holding it while I climb. At the other

extreme is distribution of knowledge and understanding. The architect designing a clinic

for the doctor needs to know design constraints that only the doctor can tell her, while

the doctor has to to compromise with structural constraints that only the architect can

tell  him.  Between  these  there  are  many  ways  of  spreading  tasks  and  information

around .

Both extremes are found with cooperative inquiry. At the division of time end one person

looks into the microscope and dictates notes that the other writes down, and they are

both equally trained so that they can swap jobs when they get tired. At the division of

expertise  end  a  mathematician  and  a  field  biologist  work  together,  neither  able  to

understand  in  detail  how  the  other  does  what  they  do.  Or  a  team  of  200  people

construct, fine-tune, and operate a particle collider; the team contains theoreticians who

understand in detail  the eventual aim and the unexpected information that might be

valuable,  experimentalists  who  have  the  knack  of  teasing  the  information  out  of

subatomic processes, engineers who can design it, electricians and others who can put it

together, and the people who construct honest but intelligible grant applications. None of

these tribes knows everything that allows a member of another to do their job, and all of

them have the merest amateur ignorance of some of the other expertise. Yet it all hangs

together to serve the collective enterprise, which only a few of them can formulate in

accurate detail.122  

Suppose the team gets an important result. Whose result is it? Suppose that it is true,

and  their  procedure  is  not  only  impeccable  in  terms  of  the  current  standards  but

122  Gallison (1987), (1997),Randall (2011).
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appropriate in a way that an even fuller knowledge of the facts would endorse. Then, if

ever, the result is knowledge. But whose knowledge? In its most complete form no one of

them can even state it. They put together the knowledge and in that sense they know it,

collectively. (And future people may say "already in the twenty-first century they knew

that…", with an even vaguer and wider "they".) But how can this be when no one of them

can even state it? Take a step back for a better look.

what knowledge requires

Collective  or  distributed  knowledge  is  a  less  problematic  idea  than  collective  or

distributed  belief.  Compare  with  action.  Collective  intention  is  trickier  than  collective

accomplishment,  because  the  latter  needs  only  that  all  the  components  of  what  is

accomplished be produced,  in  the right  arrangement,  as  a result  of  the activities  of

individuals in the collective. Similarly, distributed knowledge needs only that the thoughts

of the knowers be sensitive enough to the known situation. A set of sufficient conditions

is that (a) there is a correlation between ways that the situation could have been and

ways that collective states of the knowers-together would consequently be, (b) some

thinking or activity of each of the knowers is essential to (a), and (c) a significant cause

of each knower's activities or thinking included in (b) is the activities or thinking of other

knowers, in a way that links every one of them to everyone else. There is more than a

little vagueness in these conditions: correlation comes in degrees with various causes,

thinking and activity are not particularly sharp concepts, the linkages of each to each can

be distant or intimate. But this has advantages; it makes it easier to discuss evidence, as

we will see. It is not required that the whole fact be represented in any person's mind.

The distributed partial representations can then be the basis of coordinated activity on
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the part of the individuals to result in a collective accomplishment, which frames further

collective action, and so on as in the purely individual case.

Individual representations are often of particular things, properties, and processes, while

the resulting shared representation can be of a fact, something with logical form and

potentially expressible in language so that it can be true or false. And that propositional

thing is the object of knowledge. For a clue about how this transformation takes place

consider a case of imperfect testimony. An observer with good eyesight but not much

knowledge of birds is reporting to a myopic twitcher who is taking notes. Both of them

are sending their data to an evolutionary biologist who has enormous ornithological and

other knowledge but is hopeless in the field. The observer says that a large dark-coloured

duck with a white necklace is having trouble getting airborne from the lake. The twitcher

knows that the bird must be a loon rather than a duck. The biologist knows that loons

are not closely related to ducks, that they often have trouble taking off, that this is south

of the normal range of loons, and that for its subspecies this bird is behaving normally.

So she sends a note to a professional newsletter saying "gavia arctica may be extending

their  range southward  while  behaving  otherwise  normally".  All  three  participants  are

essential, because of the limitations of the observer's skill in recognition, the twitter's

eyesight, and the biologist's field skills. None of them has the full content, because only

one knows exactly where on the lake the loon was, only one can identify it as a loon, and

only one knows the taxonomy and life habits of loons.

The three-person team is an instance of a pattern typical of distributed cognition. One

agent identifies and names the object — that bird on that lake — another then applies
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appropriate predicates to it — loon — and a third puts these together in a relevant logical

form. All three — name, predicate, form — will often trace back to their earlier uses in

other reference-defining contexts.

The same general pattern occurs in more sophisticated cases. Someone can refer to an

object of their thought, though mis-describing it, and pass the reference on to someone

else,  who  may  also  be  the  recipient  of  information  from others,  who  can  put  it  all

together in ways that correct their mis-descriptions. That much is clear from the classic

causal account of reference.123 To extend this, consider that the recipient may have an

inaccurate description in some respect, and that one of their sources may have a more

accurate  one in  that  particular  respect.  The  biologist  may assume that  the  loon did

eventually get airborne, because they usually do, while the observer saw that it did not.

In these cases the knowledge is not simply shared but distributed, a different compound

of  components  that  can exist  although no single  participant  has  all  of  them. In the

examples  a  dose  of  communication  and  persuasion  might  make  the  distributed

knowledge available to all parties. But in more complex cases individual limitations in

skill, background, and capacity to manage complexity will make this impossible. So the

knowledge is distributed if it exists at all.

Scattered representations may well fit together to make false or insane "beliefs" also. But

the  combinations  that  count  as  knowledge  are  special.  They  should  track  both  the

possible alternatives to the facts that make them true — the more of them and the more

possible the better — and the future true constellations of states that arise from similar

situations. The general pattern is that states bearing components of reference to aspects

123  Kripke (1980), Putnam (1973), Burge (1988).
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of the putatively known facts covary counterfactually with those facts.124 If things had

been  somewhat  different  correspondingly  different  contents  should  have  been

assembled, and when things are different in the future parallel cognition, operating in

and between the relevant people, should frequently lead to equally successful outcomes.

(If there had not been a dark water-bird on the lake, the eventual report would not have

been that there was a duck there, if it is a simplified Nozickian account. And if a duck or

a loon does appear it will be reported as such.)  

This is very close to a now-standard tracking conception of knowledge, as I discuss it

below in the shared/attributed case. And it is vague enough that it can be reconciled with

several versions of that.125 It does not rely on a prior notion of belief: it makes its own.

Later in this chapter I discuss how it can work with no conception of belief, narrowly

construed, at all. And in the next and final chapter I discuss the significance for the role

of experimental evidence. 

series of tests by teams of researchers  Scientists nearly always work in teams,

generalizing over a vast range of styles and organizations. This is particularly true of

experimenters, as sociologists of science have explored in detail. The teams are often

very large, sometimes enormous, with complex social structure, bringing together the

work  of  people  with  interlocking  but  generally  distinct  expertise.126 Research  teams

124  Speaking of facts is not meant to introduce an ontology of them. Rephrasing in terms of individuals and
properties would say the same, but at greater length. 

125  The grandparents of these positions are Robert Nozick and Ernest Sosa. Nozick (1981), part 3, Sosa 
(1999). Note that Nozick uses a somewhat non-standard conditional, and the analysis is nearer to a 
biconditional than would appear from this and many expositions. See also Greco (2016), Pritchard 
(2018), Rabinowitz (internet).

126  Gallison 1987, chapter 6
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contain many specialists: equipment designers, statisticians, theoreticians, organizers,

and others.127 Missing from this list is "evidence assessor". No one is trained or functions

to  tell  their  colleagues  when  they  should  believe  a  hypothesis.  Team leaders  make

announcements on behalf of the group, and before doing this take advice particularly

from their tame statisticians. And in general individual researchers can get by with a very

superficial  grasp  of  what  others  in  the  team  understand.  As  in  many  cooperative

activities, what individuals believe about the facts can be less important than what they

believe about what other people believe. There may even be cases where most people in

a discipline think that most others subscribe to some view and tune their cooperation

accordingly, though in fact most have private doubts. (Candidates might be attitudes to

ways of papering over the cracks in standard approaches to the mysteries of quantum

mechanics, or working linguists’ attitudes to the latest MIT syntactical orthodoxy.) 

On the other  hand there usually  is  a consensus about  which tests  a hypothesis  has

passed or failed, with what margins, and perhaps less confidently how stringent they

were.  The  criteria  for  these  are  hammered  out  before  the  experiment  is  actually

performed. (Statisticians typically come in here, setting up a situation which will produce

results which can be handled in a prearranged way.) There is also usually a consensus

about the theoretical advantages and problems of a hypothesis. But we need much less

of a consensus about how all these tests and advantages are to be weighed against one

another. Then, well  into the process, the team can decide such things as whether to

publish, what to say to other groups, whether a press release is called for, and so on. To

do this they do not have to agree about how to sum up the force of evidence, let alone

127   Perhaps the first research assistant was Alexander sending samples to Aristotle. He wouldn't like that 
description. Neither of them would.  
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whether they have established or refuted one of their hypotheses. What they have to

decide is whether an action such as publishing would be good for the subject, good for

them collectively, and good for them individually.

In a typical history one team of researchers tests a hypothesis experimentally, and then

another team replicates the test, or tests it in some other way. Eventually there is a

series of tests of varying stringency which the hypothesis has passed or failed to varying

degrees. After all this there may be a consensus among scientists: established, refuted,

still up in the air. This process can be a charade, if the tests are badly done or if there is

some  mismatch  between  them,  as  when  they  mistakenly  use  different  medicines,

species,  substances  or  whatever,  for  example  when  tests  of  the  medical  effects  of

compounds  ignore  the  difference  between  isomers.  The  probabilities  may  also  be

inappropriate. These issues were discussed in chapter 4. 

Different investigators and different teams of investigators will react differently to single

tests  or  small  sequences  of  tests.128 Different  theoretical  backgrounds  and  different

commitments  to  what  the  satisfactory  theory  should  be  like  will  result  in  different

assessments of the evidence. Sometimes what one school takes as finally establishing an

idea will be taken by another as a target for refutation and undermining. Sometimes this

can mean resisting the force of evidence, and the constructive aspect is searching for

experimental  evidence  and theoretical  constructs  that  allow the  reassessment  of  the

evidence so far. It is a bad idea to give up too early, just as it is a bad idea to be too

stubborn, to give up too late. As Kitcher has argued, it is a delicate business whether one

128  While agreeing about which tests were passed and how severe they were. This is like the distinction 
between evidence and confirmation in Bandyopadhyay, Brittan and Taper (2011) but with more cynicism 
about confirmation.
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should be responsive or stubborn in the face of evidence, for example a series of varied

tests, that could still be resisted. Among other things it depends on the structure of rival

positions in the discipline, how equally populated they are, whether there is a consensus

that can be altered, and how subject to reinterpretation disputed evidence really is.129 I

should  add to  what  Kitcher  says  that  the  value  of  one  or  the  other  strategy is  not

determined by what individuals think about the force of evidence and the structure of the

discipline but by what the facts about these things are. Retrospectively, perhaps years or

centuries later, historians of science may be able to say "that was a good move" or " that

turned out to be a mistake".

When the process has gone well apparent and real stringency are not greatly separated.

There is a fit between the results of particular tests and the causes of the phenomena

that feed them and as a result there is a fit between successive tests. They have the

same targets. When all goes well, as a result of correctly applied standard procedure, the

results of different tests carried out by different teams refer to the same phenomena and

their causes. Then no one has to sum up the series in the form of a verdict, and the

shared objects of reference can be part of the basis for shared or distributed knowledge.

In the ideal case, the two dimensions of fitting, between test and fact and between test

and further test, underwrite a knowledge-based reference: the terms in the hypothesis

refer to corresponding qualities of objects, which qualifies as shared knowledge of them.

meta-analysis 

129  Kitcher (1990), Wray (2002, Perovic (2011). 
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There is an instructive analogy between shared knowledge based on a sequence of tests

and the somewhat controversial statistical technique of meta-analysis. In meta-analysis

we take a number of studies of the same hypothesis and combine them in ways that

promise to give more reliable results than any of the individual tests. This section is not

the in-depth analysis of meta-analysis that waits for the attention of some statistically

sophisticated open-minded philosopher of science. Instead the question is more limited:

what we can learn from meta-analysis about combining studies.130 

In  the  very  simplest  kind  of  meta-analysis  one  simply  combines  the  data  from the

component tests and performs the same kind of analysis to this larger body of data. Even

this procedure can give striking results. The result can be different from the majority, or

even all, of the component studies. It is not just an averaging of their outcomes. The

reason is that it is based on a much larger sample than any individual study. 

We can make this crude method more sophisticated by building in a comparison of the

sizes  of  the effects  of  the relevant  variables  predicted  by the  hypothesis  with those

estimated from the  data,  and the variances of  the  effects  about  their  means in  the

particular studies. Then we can average the effect sizes and combine them while giving

greater weight to studies with less varied outcomes. The result is usually called the fixed

effects model. We can increase the sophistication further by including a measure of how

much the samples vary from one another. This can take account of the possibility that

the samples in the different studies were drawn from somewhat different populations. A

further layer can incorporate judgements about the methodological quality of the various

studies.

130  Hans (1997), Hunter and Schmidt (2004), le Lorier and others (1997), Stegenga (2018) chapter 6.
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Meta-analysis transparently requires the results of a number of studies, whose details are

available to a corresponding number of teams, to be combined so that a compilation of

their results is available to the person or team doing the meta-analysis. They are unlikely

to work with the full details, and in fact it is likely to be counterproductive if they do,

though it is important that they can access them if required. And the results of the meta-

analysis  will  be  shared  with  investigators  who  have  not  the  sketchiest  grasp  of  the

individual studies. So even if  there is only one-meta-analyst, the full  contents of the

studies is shared between that person and various consumers of the result 

These consumers will often not have knowledge of the result — as individuals — because

of  these problems of  transmission.  But in  many such cases there will  be knowledge

spread  between  them and  the  original  research  teams.  For  the  full  facts  about  the

individual studies and their meta-analytic glomming together will be distributed between

all these minds. Eventually this can take the form of knowledge possessed by individuals.

It certainly will not always.

the epistemic irrelevance of individual belief

What communities think and what is handed down to later generations is more important

than what occupies the mind of any particular person. This is true in science and in

unscientific  matters.  Focussing on the process  leading to general  acceptance we can

distinguish four stages. Belief is not needed at any of them.
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The first is motivation. A question arises from previous research or from a worry about

existing theory or  from evidence from tests of  a hypothesis  that are inconclusive or

unsatisfactory in some other way. So more experimental work is needed. Experimenters

may  not  have  the  question,  worry,  or  lack  of  satisfaction  because  they  believe  the

hypothesis is false. It is enough that they think that others could be unconvinced of it.

(And there is the point already made that what everybody thinks everybody else thinks is

more  important  than  what  they  really  think.)  So  there  is  a  motive  for  planning

experiments,  which may involve considerable  thinking and ingenuity.  Secure belief  in

existing explanations can be involved here, in thinking that a proposed experiment has a

good chance of revealing something. But it is not belief in the hypothesis concerned, or

for that matter belief that it is false.   

The next stage is to carry out the experiment. Belief or disbelief is obviously not central

here, since the issue is whether. Equally obviously, thoroughly established or refuted or

nutty possibilities  are far  from any priority.  (There is  no shortage of  interesting live

conjectures.) As with the planning stage, shared established doctrine may play a large

role in doing the experiment, but this is not belief in the hypothesis or its negation.

The third stage is analyzing the results. I have been describing this in terms of passing

and  failing  tests.  One  could  extend  this  to  include  gradations  of  passing  or  failing:

strongly, marginally, and so on. These are not degrees of belief! A hypothesis can pass a

test strongly while its negation passes a different test equally strongly. Confusing but

possible.



161

Likelihoods may play a large role in analyzing the results. These also are not degrees of

belief. They can be intrinsically connected to the hypotheses, saying how likely the data

is according to the hypothesis. Or they can be an agreed consensus among the relevant

scientists,  more  of  a convention than an average of  what  they will  think.  As  James

Hawthorne says

Students are trained up on examples that instill a capacity to correctly perceive the

implications.  This  training  ultimately  tends  to  provide  a  high  degree  of  expert

agreement regarding what a theory says about specific cases — that is, a high degree

of expert agreement on the values of the likelihoods, or at least on values of likelihood

ratios. These agreed likelihoods do not simply represent an expert’s individual degree-

of-belief that an event has or will occur if a given theory is true—at least not in the

first instance. Rather, it seems, experts consult the likelihoods they have internalized

through their training to help them determine what to believe in specific cases, and

how strongly to believe it.131 

"what to believe" here means what likelihoods to assign. It can differ from the strength

of a person's expectation, because they depend entirely on the content of the hypothesis.

Other sources of information or opinion are disregarded. As he goes on to say, otherwise

... each member of the scientific would generally have his or her own distinct personal

likelihood  for  the  evidence,  depending  on  what  else  he  or  she  knows  about  the

evidence. This would make a complete hash of  scientific  hypothesis testing. What

should a researcher report in a scientific journal?

The aim is to produce results that other researchers, perhaps from contrary traditions,

can use to guide further work. And

131  Hawthorne (2005).
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Bayes’s Theorem is central to Bayesians precisely because they treat the likelihoods as

more objective than the posterior probabilities that likelihoods are used to calculate.

Bayesians  treat  the  likelihoods  as  stable  points  to  which  prior  and  posterior

probabilities must coherently conform.

The use of ratios of likelihoods in "objective" Bayesian methods is no problem, since they

are  obtained  by  procedures  that  others  can  replicate  rather  than  coming  from  the

vagaries of individual minds. (Prior probabilities for hypotheses and even for data are not

problematic either, as long as they are obtained in simple ways and they are thought of

as devices for getting the likelihoods right.) What we do not need are beliefs that vary

from  person  to  person  although  these  people  are  engaged  in  deeply  cooperative

enterprises.

In the fourth stage hypotheses that have done well in series of tests are presented to the

larger scientific community and to the whole intelligent world. This generates beliefs,

propositional states that would be knowledge if their content was adequately connected

and supported. Often they do not qualify as knowledge, because the conditions are not

met. (A student hears a marketing class by a thoroughly expert speaker, but is not really

paying attention though he is lucky enough to absorb this claim, which he could easily

have garbled, and has no sense of why it is true.) The agents at this stage are textbook

writers,  popularizers,  survey article  writers,  and so  on.  They are usually  reflecting a

consensus that a body of scientists has arrived at. But they will very rarely know about

all  the  experimental  work  behind  the  idea  that  they  are  disseminating  and  all  its

presuppositions.  So  taken  in  isolation  these  people  also  do  not  know.  Taken  as

representatives of communities they have a form of shared knowledge.
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When the path to orthodoxy takes these four stages, at any rate, we have a disjunction.

The item is either known in an essentially shared or sometimes distributed way, or it is

not knowledge at all.

Consider a hypothesis that receives the imprimatur of the varied tribe of codifiers as a

result  of  passing a series  of  stringent  tests,  and eventually  filters down to graduate

students and historians of science. When enough of this has happened the world thinks

of it as having been accepted. But the acceptance may be premature. The trivial reason

is  haste  or  enthusiasm,  possibly  encouraged  by  an  attractive  hypothesis  promising

explanatory power.  A deeper reason is  tests that are less stringent than they seem,

because of errors about the background conditions of the experiments, or because of

unknown factors influencing their results. The opposite can also happen. A hypothesis

can get to this stage in the mind of the consensus-making tribe although in fact the tests

are more stringent than they are thought to be. In either case, the point in time when

the hypothesis is generally accepted can be different from the point when there is strong

accumulated evidence for it. So much the worse for the idea that there is a fixed level of

evidential support beyond which it is wrong not to accept a hypothesis.

degrees of knowledge, degrees of sharing

The ignorance/knowledge contrast and the shared/distributed contrast are not as 

absolute as it may have seemed. In both science and common sense we have somewhat 

flexible standards of both, and the standards for each are connected. I believe this is 
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generally accepted, when expressed right. So the task is to say it clearly enough that the

obviousness becomes obvious.

 

Professor Shirvani, a world expert on gravitational waves is giving a lecture on which

aspects of general relativity are involved in detecting them. She makes a controversial

and somewhat technical point, with a defense of it that would have convinced any of her

expert colleagues. An undergraduate physics major is listening to her. He either

a) understands and accepts the claim, but was not really paying attention and could

easily have misunderstood it.

or

b)  is trying hard and succeeds in understanding the claim and its justification, but the

exposition is so technical that a misapprehension was only avoided by chance

or

c)  is  paying  attention  and  has  the  right  background but  Shirvani   is a

terrible communicator and it is only by luck that the correct sense gets through.

Does he come to acquire or share in knowledge? I think it is intuitively clear (and fits

with the analysis that follows) that a) is an extremely marginal case of knowledge on any

standard conception and that b) and c) qualify as knowledge or not depending on where

the boundaries for it are drawn with a generally admissible range. Within this range,

moreover,  once  it  is  admitted  that  the  case  is  somewhere  within  it,  the

knowledge/ignorance  conclusion  depends  essentially  on  where  equally  acceptable

boundaries are placed.
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It is a complicated vagueness, though, depending on a number of factors. Three of them

are:

– the tightness with which the resulting state tracks the fact through possible ways it

can occur and can fail to occur

– the reliability of the chain of transmission from one user of a word to another

– the tightness of the connection between knowledge in a particular case and true

belief (or knowledge) in similar cases.

The first, tracking, measures the because-ness of the state, how much it is true as a

causal effect of the fact that it is true.

The second, transmission, measures the unity of the thinking spread between different

people.

The third, similar cases, is a central reason why knowledge is an important concept. It

underwrites the connection between knowledge and evidence.

While the knowledge/evidence connection is a large part of the importance of knowledge

it  does  not  help  decide  where  the  boundaries  should  be  drawn.  For  there  can  be

evidence, even strong evidence, for hypotheses that fall far short of knowledge. A theme

of this book, returns: characteristics of knowledge are found even when knowledge is not

attained, notably in the relation between evidence and hypothesis.
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Begin  with  tracking.  The  representation  that  is  a  candidate  for  knowledge  should

correlate with the not too exotic possibilities for its truth. The correlation does not have

to be perfect, but there has to be a causally substantial link between facts and their

representations.  Not  too  many  exceptions,  and  preferably  obtained  by  isolated

unsystematic processes. The allowed exceptions vary from one modal epistemology to

another;  I  am  bundling  them  altogether  to  be  managed  with  the  auspiciousness

considerations below.

When  dealing  with  a  mythical  isolated  agent  the  tendency  is  to  postulate  a  single

representational state, a belief, which incorporates the entire known representation. But

this  is  not  necessary.  Consider  the  three-person  loon-watching  example  again.  The

biologist does not have to know the details of what the ornithologist and the observer

report to her. She only needs enough that she can put together an outline view that can

serve in consultation with them. If her summary account is in touch with the loony fact,

then were the observed fact  different the observation and the tweaking of  it  by the

ornithologist would be different and so her outline would be different in its full content. In

fact,  it  would  be enough if  she  simply  reported  that  a  bird  as  characterized  by the

twitcher was in the location specified by the observer doing what the observer said and

thus leading to the conclusion drawn by the ornithologist. So the basic requirement is

just that among the interacting states of mind of the person or people concerned there

be states that have the right responsiveness to possible variations in the actual situation.

For different facts they can be states of different people, and for any given fact they

could be different kinds of state of any given person.132  

132  So we do not need belief as a single category of states of even isolated people.
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The effect is to make the correlation conditions bear the weight otherwise supported by

the concept of belief. This satisfies a somewhat arcane and definitely controversial need

in the case of a single knower, but is essential in the case of a network of cooperating

investigators.

Now  auspiciousness.  We  want  to  locate  the  exceptions  to  perfect  causal  correlation

between representation and represented so that present knowledge tends to future truth.

No real human being exhibits a perfect correlation (probably not even with any single

conclusion), but the demands of different topics and modes of thinking are different so

that  the  concessions  to  human  imperfection  are  different  for  different  kinds  of

knowledge. They are likely to be different for quantum mechanics and field biology. The

need is partially met in terms of the correlation requirement left vague just now. The

allowable exceptions to perfect correlation between ways that a hypothesis could be true

and ways that a person or network of people could arrive at it as a conclusion, in order

for that conclusion to count as knowledge, can be stipulated so that in similar situations

the same means also lead to true conclusions. That is, we can declare that the right set

of exceptions in order for a particular hypothesis to be known by a particular person are

those that maximize the chance that in similar circumstances any conclusion she comes

to will be true.

At least some of the additional burden is taken care of by the fact that all such loosenings

of the correlation only make exceptions to an overall correlation. So whatever form they

take knowledge will still generally result in true belief when circumstances change. This

obviously makes weaker “knowledge” still  worth having. Its value remains when it  is
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scaled-down: weaker tendencies to true belief are still  desirable for researchers when

that is the best they can get. Even the very beginning of the road to is still being on the

right path.

Possibility c) above introduces another matter of degree. The transmissions of reference

and of evidential force from one person to another may be more or less strong. When

what is passed on is extremely weak there is very little to distinguish as distributed

rather than individual knowledge. And they never get as strong between people as they

do within one person's brain. This is another consideration tending to the conclusion that

there  is  no  absolute  fixed  point  at  which  general  contact  with  the  facts  turns  into

knowledge. But, as I have been emphasizing, this makes my larger position easier to

argue for, since it opens up a slippery slope down to degrees of "knowledge" where we do

not  apply  the  term,  where  thinking  in  terms  of  evidence  rather  than  any  form  of

knowledge is more natural. People can be on the road to what we do call knowledge even

if they are not far enough along for complacency about whether we have arrived. 

Scientists and everyone else  

Science is one of the main homes of distributed knowledge, in part because the activities

of experimentneed and it are well suited for cooperation and shared intention. Though I

think there are analogues in pre-scientific life I will not argue for them. Instead I will

note  how  underappreciation  of  the  collective  element  in  science  can  complicate  an

outsider's attitude to scientific results.



169

An intelligent  non-scientist  with a decent but entirely  non-participatory knowledge of

science reads of a new results. It could be a newly congealed synthesis which has been

put together and is generally accepted, or it  could be a test which a hypothesis has

passed or failed. She is likely not to understand where the idea is placed in the cycle

from conjecture to acceptance. A crude consequence is that she will not know whether to

think "this is what they are asserting now" or "that is one piece of evidence, no doubt

among many, for it". 

Moreover,  she  will  not  have much idea about  the strength of  the evidence that  any

particular  trial  gives or what the alternatives it  was tried against  are. Both of  these

require experience of scientific practice and of the recent give and take in the area in

question.

Scientists in other fields than the particular topic will often be in a similar situation with

regard to what they do not know. But they will be much clearer about the fact that they

do not know these things. And their experience in fields that work in similar ways will

allow them to grasp and discount their ignorance of the details. Combined with this, they

will have learned how much in their own work they rely on the competence of others.

(This makes scientific fraud easier, since being set up for distributed action science is a

generally trusting area.) So if they understand that the methodology was standard and

the researchers well qualified, they will have a fair amount of confidence in the outcome.

All  of  this  may  sometimes  make  them too  accepting  of  overconfident  work,  out  of

ignorance about the details of what actually occurred and the people who did it, but it will

not  lead to blanket  distrust  of  what  they find  from well-informed sources.  (Think of
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Nature or Proceedings of the National Academy of Sciences, which researchers often read

to keep up with developments in other fields. Philosophers will often read such journals,

but those completely outside science, however generally well informed they are, will pick

up most of their acquaintance of suggestions that are well supported by evidence from

sources that mix it up with epistemic junk.)

So  not  participating  in  distributed  inquiry,  non-scientists  are  vulnerable  to

misunderstanding what lies behind the results they hear of. This generates a general

mistrust.

and experiment 

Knowledge and epistemic cooperation suit  one another,  in that sensitivity and similar

properties  of  knowledge  link  the  known  content  to  its  objects  independently  of  the

vagaries of a particular person's use of language. The network of cooperating inquirers is

nearer to self-sufficiency. When the cooperation involves experiment the congruence is

stronger, even more so when it is a matter of distribution rather than simple sharing.

Think of a cooperative inquiry as like a radio telescope with an array of widely spaced

receivers. Or like a school of individually vulnerable animals who by gathering together

can pool their sensory resources. When each step of observation and reasoning is carried

out by a separate individual, as with shared inquiry such as the loon example, then the

chain can fail at its weakest link. (If the ornithologist takes the loon to be a coot rather

than a duck then all the skill of the observer and all the expertise of the biologist are
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wasted.133) But when the roles are distributed and overlapping the results can be checked

against one another.  

Parallel considerations apply to designing and performing the experimental process and

analyzing the resulting data, the articulations of experiment from chapter 2. Performing

the experiment is in general almost trivially distributed, in that it is an intrinsically multi-

person action.  Moreover  in  different  situations,  crucial  to  evaluating  the  outcome as

knowledge, the interactions of different contributors, and indeed who contributes what,

can be different, still  leading to accurate results. Planning and analysis are much like

observation. Agents can perform sub-tasks without knowing the results of one another's

work. Think of a statistician outlining a number of calculations that need to be performed

and delegating them separately to that many calculators who hand their results to a

number of different people. And some agents can modify the tasks done by others. And if

things done by different individuals conflict the tasks and the distribution can be varied.

Again  the  bottom  line  is  that  what  happens  intellectually  depends  on  what  the

participants do, and that their collective doing is no some of individual results. Only then

is the full  power of experimentation exploited, and together with this the information

gathered exceeds both what any one participant could collect and what they could collect

together by simply handing along partial information from one to another.

As a byproduct, we get a sharper description of the contrast between distributed and

merely shared knowledge. A conclusion is distributed to the extent that participants are

133  A coot can be a foolish person, just as a loon can be a crazy one. And a goose is sometimes someone 
silly, a chicken someone who is unreasonably afraid. What is it about these bird words?



172

influencing  one  another's  results  rather  than  either  simply  receiving  them or  simply

adding to their effects.
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ch 7: evidence, finally

Why do we think that nothing travels faster than light? Because we have such a lot of

evidence, much of it derived from experiments. How do we know that nothing travels

faster than light? Because we have  done the experiments.  Two entwined themes have

run through these chapters.  One has been the connections between experiment  and

desirable  features  of  evidence.  The  other  has  been  the  presence  of  knowledge-like

attributes behind the scenes of a number of epistemic phenomena. But mingled as they

have been these  two  themes  have  not  yet  merged.  How do they connect?  What  is

evidence? What general characteristics of experiment bring these benefits? Now is the

time to tie the threads together.    

K-evidence    

Evidence is the raw material that builds into knowledge. When you have enough evidence

you  stand  to  know something.  (Other  conditions  obviously  have  to  be  met  also,  in

particular truth.) I suspect that all accounts of knowledge and of evidence acknowledge

this to some extent, but it is characteristic of the present and similar attitudes that they

make it central to the concept of evidence. More specifically the accumulation of some

kinds of  empirical  data,  typically  effects of  some causal  factor  that  also  results  in  a

hypothesis being chosen or accepted, puts individuals and collectivities in a state where

they have knowledge of that factor. 

Chapter 0 distinguished a kind of evidence which I called K-evidence since it is essentially

connected to knowledge (in contrast to R-knowledge, whose most basic connection is
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with reasonableness). But chapter 6 argued that what we usually call knowledge is just

the visible spectrum of a wide range of knowledge-like conditions, which range from the

easily attained to the very demanding. More demanding conditions then are needed by

every day knowledge-attribution are often met when data is collected in the context of an

experiment. Actually occurring data d is K-evidence for H1 rather than H2 when:

- there is a world w1 such that w1 is the nearest (H1 & d) world & for all w2 if w2 is the

nearest (H2 & d) world then w1 is nearer than w.    

and

all worlds relevantly near to w1 are H1 and all worlds relevantly near any w2 are H2 

and

in appropriately many H2 worlds H1 is believed and in appropriately many H1 worlds H2

is chosen. (Choosing a hypothesis can be a variety of actions from taking it seriously

to writing it in textbooks and teaching it to your children, depending on the stage of

evaluation, as discussed in chapters 3-6.)

The  deliberately  vague  terms  all,  relevantly  near  and  appropriately  many are  to  be

understood so that stronger relations of knowledge require nearer and more instances,

and so that the overall conception is directed to safety (that is, so that when Hi is chosen

it is often true).134  Note three basic points.

There can be evidence for false hypotheses. This may address a worry about objective

accounts  of  evidence.  There  are  two  reasons.  The  first  is  that  the  message  of  an

experiment, in terms of K-knowledge, is, or better suggests, not that a hypothesis is true

134  This is more suitable for empirical evidence, where much of what is supported is in various ways 
causally necessary (Ch. 5). 
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but  that  one  hypothesis  is  less  distantly  actualized  than  another.  This  is  perfectly

consistent  with  their  both  being  false.  One  way  that  this  can  happen  is  when  two

hypotheses are being compared and the truth consists in a third one.

The second reason is more subtle. It is that the results of experiments never simply

dictate conclusions. Otherwise their familiar variation would be paradoxical. Instead of

giving experimenters opinions they suggest or encourage them. They are more like the

testimony of not completely reliable witnesses, diverging from one another way, than like

unimpeachable authorities, even authorities giving nuanced guidance in terms of their

degrees of confidence. So when a hypothesis becomes the front runner after one or even

a series of experiments experimenters should still take it as giving something tentative.

For the conditionals that underwrite the interpretation of the experiment are themselves

tentative,  and  can  be  discredited  by  conflict  with  other  outcomes.  So  evidence  as

understood  here  is  a  matter  of  shaping  the  outcome  of  a  particular  test  —  which

hypothesis passes and how strongly — rather than how near the favourite one is  to

acceptance. 

The vagueness of the italicized terms can be an advantage. It allows them to be applied

with different degrees to different stages of the acceptance of a hypothesis, as described

in chapters 4 and 6. And it matches the uncertainty of most ascriptions of evidential

force.

The evidence relation is constructed here around a competition between two hypotheses.

So  it  describes  comparative  rather  than  absolute  confirmation.  One  advantage  is  a
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connection with the literature in statistics. Another is the continuity between sensitivity-

like and safety-like interpretations of knowledge, in replacing not-H1(2)" with "H2(1)". A

further advantage is given by the considerations in the next section.

connections with experiment

The structure of experiments produces a reversal condition (as described in chapter 2),

which produces K-evidence. The argument for this inevitably makes a few simplifying

assumptions.

To  see  when  experiments  lead  to  reversal  conditions  suppose  first  that  we have  an

experiment  with  a  trigger  t  and  two  incompatible  targets  T1 or  T2 linked  to  two

incompatible hypotheses H1 and H2 is true, so that “if (H1 or H2) then (if (t and Hi) then

Ti)” is true, for i = 1, 2 (the trigger will lead to a corresponding target when one of the

two hypotheses holds) and if Ti occurs then Hi is chosen. Assume also that the choice of

a hypothesis depends only on the result of the experiment, and that the targets Ti are

mutually inconsistent, not just given the trigger so it is not the case that T 1 and T). Now

suppose that t is activated and T1 is the result. Under the supposition that one of the

hypotheses  is  correct,  since  T2 would  have  resulted  if  H2 were  true  and  the  Ti are

incompatible, H2 is false and the true one must be H1. So "if H1 or H2 then H1" is true; H1

is closer to actuality than H2 is.  

The argument can be applied to any n hypotheses also. It reverses conditions where the

truth of one hypothesis on a finite list results in a corresponding target, to the conclusion
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that if a target occurs it must be as a result of the corresponding hypothesis. This is

consistent with the possibility that neither hypothesis is true, and with the possibility that

the particular target observed is a result of the truth of neither but something completely

different. What we have is evidence for the winning hypothesis, rather than even degrees

of proof. And these considerations by themselves do not tell us how widely spaced or how

near to being actual the hypotheses are. If the experiment is comparing three or more

hypotheses they may not be evenly spaced.135,136

Now to go from a reversal  principle to K-evidence. The aim is  to show that given a

reversal principle for two hypotheses and an experiment favouring one over the other,

the favoured hypothesis is more nearly known than the other. The central part of this is

already  in  place,  in  the  link  between  experiment  and  reversal.  A  fact  is  K-evidence

supporting H1 over H2 when drawing the line between knowledge and non-knowledge

between H1 and H2 would make H1 known and H2 not. That is, both may be false and the

K/not-K division consists of an extension of "actual" to include situations near to actuality

plus  a  tolerance  of  more  exceptions  between  truth  and  acceptance  than  would  be

admissible for what is normally called knowledge. Since the standard counterfactuals I

have used to describe experiment require that the consequent be true in  all nearest

worlds where the antecedent holds, there are no relevant exceptions to consider. (This is

clearly an idealization.) And in the case of only two competing hypotheses there is no

contrast  between  sensitivity-like  and  safety-like  since  on  the  —  also  idealized  —

assumptions in play accepting or rejecting one means rejecting or accepting the other. So

135  Choosing between more than two hypotheses might be thought of as a series of binary choices, but it 
might matter in what order they were taken since analogues of the intransitivities of majority voting 
might arise.

136  Stronger assumptions might impose more constraints here. One likely consideration would be how 
possible other causes of the targets are, which depends in part on the insulation of the experiment.
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counting  nearby  worlds  as  honorary  actuality  is  the  only  remaining  factor.  Then

comparative nearness to actuality is all that is needed to allow the line to be drawn. As a

result, subject to these assumptions, a standard experimental setup gives K-evidence for

the hypothesis that it endorses.

These two connections together describe part of why experiment gives particularly good

evidence. The circumstances where the experiment gives thumbs up to a hypothesis

when it opposes a particular rival are ones where it is nearer to being true than the rival.

With many other forms of support, on the other hand, the assurance that what is taken

for evidence does in fact lead in the direction of truth for this particular hypothesis is

rather indirect. It can consist in crudely inductive support for a blunt generalization about

hypotheses compared with a methodology (such as one of the rival statistical paradigms,

or  scientific  method  as  reconstructed  by  philosophers)  covering  a  large  variety  of

hypotheses concerning a large variety of areas. Or it can consist in an appeal to formal

rationality,  without much assurance that rationally false beliefs tend to be true. (The

historical changes in conceptions of scientific method ought to make one pause about

this.137)  

In contrast,  the K-evidence approach is  directed at the particular circumstances of  a

particular theory-accepting situation. It does have its own price, inevitably. It is hostage

to unknown, and even unknowable, factors. When our understanding of the causal nature

of the evidential situation or of the circumstances where the hypothesis and its rivals

would be true or false is very flawed, our beliefs about what we know and what in this

137  Sometimes the appeal  is  to  statistical  procedure  with  the  implicit  defence that  the  conclusion is
probably true, even from people who understand the difference between probability and likelihood. I
hope the discussion in chapter 4 has made this line doubtful.
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sense of  evidence supports one hypothesis over another can be quite mistaken. The

different advantages and costs of the two approaches are best resolved not by adhering

to  either  rather  than  the  other,  but  by  thinking  out  which  problems  each  of  them

addresses best and by investigating how to combine them, how to think of  them as

complementaries.

These considerations  combine with  some more  scattered factors.  (They are probably

individually not novel or surprising but the combination may be.) The first is the fine-

tuneability of experiment. The control of the trigger and the insulation in an experiment

allows  both  deeper  and  wider  knowledge.  When  data  is  collected  under  purely

observational conditions there is no control over the variety of its causes, which can be

very disparate. Insulation allows the experimenter to limit the range of causes (though

rarely to exclude absolutely all but the factors of interest), while an artificially created

trigger  allows  a  guarantee  of  the  presence  of  one  particular  cause.  (Randomization

provides a way of getting both of these.) If insulation inhibits the usual causes then the

more  remote  ones  will  manifest  themselves.  These  factors  are  enhanced  by  the

opportunities of more accurate observation provided by controlled experimentation, so

that causes revealed by inhibiting normally dominant factors can be detected. Then K-

evidence  generates  N-evidence  that  addresses  the  peculiar  context-  and  purpose-

relativity of causal hypotheses.

One source of the ability to fine tune experiments is the freedom to tinker with them until

they work as intended. We can try out preliminary, small-scale, or alternative versions,



180

varying them in an ad hoc manner until we get one that gives consistent results.138 Then

the results of this fine-tuning constitute the basic design for an "official" experiment. For

example the persuasive evidence for the bacterial theory of gastric ulcers rests on such

carefully contrived experiments rather than on the brilliant but merely suggestive work of

Marshall, who infected himself in order to see the results.139 And there is ample evidence

from historians and sociologists of  science that in preparing an experiment scientists

extremely often vary their procedures and apparatus until they can trust their results.140 

The other factor is the greater knowledge that experiment gives of what its ingredients

are. The causal skeleton of an experiment — trigger leading to target when the array of

possible causes is limited — is surely very common. And when we perform an experiment

as part of an inquiry we normally know that the trigger has been activated by our own

actions and that it is the cause of the target corresponding to the chosen hypothesis. We

set things up to ensure this. And we usually exploit causal knowledge that is simpler and

less  controversial  than  the  intended  results.  Without  this  background  knowledge

outcomes can still be K-knowledge, but they are not appreciated as such, so that they

neither  motivate  nor  underwrite  the  fruitfulness  of  further  investigations.  (Both

background causal information and knowledge about one's evidence are discussed more,

separately, below.)

138  In my interviews with experimenters at UBC I found that nearly all of them do a lot more in the way of 
trial runs and exploratory experiments, and put more energy into improvised improvements of their 
experimental setups, then is ever explicit in their publications.

139  Marshall and Warren (1984), Hsu, Lin, and Graham (2015).
140  For example see many of the cases discussed in Gallison (1987), particularly that of the discovery of 

cosmic rays in chapter 3, and the cases in Franklin (2016) particularly Millikan's measurement of the 
charge of the electron, and the Michelson-Morley experiment.
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suggestiveness   

Experiments  often  suggest  further  experiments.  And  they  suggest  additions  to  and

interpretations of established theories. This can happen early in the evolution and testing

of an idea; suggesting further experimentation is most useful fairly early on. But there is

a complication. A person who has objective evidence may not realize that they have

reasons for belief, or the strength of what they possess. And it is harder for what you are

not aware of to motivate your activities.141   

When the evidence comes from experiment there is a route from evidence to knowledge

of evidence. It rests on the social (distributed) character of experiment. Experimenters

have to communicate in order to cooperate, so they have to be capable of putting their

observations and analyses into words. Not all of these, but enough to enable others to do

their parts. When you can say something you can know what you think, and inasmuch as

you are expressing it you can know what your relation to the objects of thought is. This is

partly because one notices what one is saying, and partly because many of the intentions

that speech-acts are conscious. As a result the status and force of the evidence becomes

available both to you and to others, to the extent that you have managed to articulate it.

The  link  from  fact  to  brain  to  consciousness  is  fundamentally  changed  by  the

experimental set up, which within limits one can tune as desired. So it can be tuned so

as to produce not just data and analysis but also awareness of data and analysis.

There is a connection here with the way that reversal principles apply to probability, as

discussed  in  chapter  3.  Probabilities  there  entered  into  the  weightings  of  factors

influencing an outcome within and outside an experiment. Those within the experiment

141  This may not always have been obvious because of my sometimes bland use of  the word "evidence".
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are  the  result  of  the  conscious  planning  of  the  experimenters.  Inasmuch  as

experimenters consciously know the design and workings of their experiment, making

them capable of communicating it, they are aware of the constraints they have placed on

the way the data is produced. So to that extent they are aware of how likely it is that the

outcome will have been shaped by one influence or another. (This is certainly not total

awareness  of  the  causal  situation,  which  is  beyond  human  aspiration.)  Thus  the

practicalities of experiment encourage awareness of the influences on the outcome as

well as that outcome itself.

But these considerations apply only to the results of experiment, rather than to objective

evidence generally. It is only with experiment that K-evidence and R-evidence come into

alignment. As a result evidence has greater power to suggest additional experimental

work that would be enlightening, and to influence how insertions into established theory

depend  on  reliable  processes.  It  hardly  needs  saying  that  these  are  useful  in  an

opportunity-opening way. I think of it as basic to science and incidental to everyday belief

where it is usually a refinement of inflexible innate mechanisms that are reliable only

within fixed limits. (While science for all its potential power is liable to overly optimistic

inference to the best explanation unless disciplined by experiment.)

bloat-avoidance 

When experimental evidence it is understood as I have been suggesting we see how we

can  separate  evidence for  different  parts  of  a  complex hypothesis.142 We often  have

142  The issue is best known from Clark Glymour's (1980, Chapter 6) bootstrapping account of confirmation,
which has convinced many that there is a serious problem with once-standard accounts of confirmation.
It is generally agreed that Glymour's account does not work, but that something of the kind must be
right.
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strong evidence for a not too adventurous hypothesis and weaker evidence or none at all

for a larger and more daring hypothesis that includes or entails it. We are just about

certain that there were dinosaurs on earth between 200 and 66 million years ago, but

much less certain that the end of the dinosaurs was caused by an asteroid strike towards

the end of that period. The second is a more specific and more general claim, and it is

based on more complicated evidence needing more vulnerable assumptions. But theories

have trouble capturing this difference. The basic reason is that, from the inference to the

best explanation down to Bayesian accounts, they focus primarily on the consequences of

the hypothesis that can be collected as evidence. So when a stronger hypothesis entails a

weaker one it has all the consequences of the weaker one and more. So it inherits the

explanation-based evidential power of its weaker offspring.

When we think in terms of experiment we can test the weaker theory without testing the

larger theory. In the dinosaur case, we can do geological and radioisotope tests on the

fossils in order to date them. These do not test hypotheses about the extinction; they will

show no difference between the core hypothesis augmented with different explanations

of the extinction. 

When there is no obvious experiment to test the weaker hypothesis without also testing

the stronger one it is simply up to us to devise one. It may strain our technological

capacities and our ingenuity to find ways of intervening to do this, but we can try, and

setting ourselves the scientific ideal of parsimonious theorizing we will often eventually

succeed.  Of  course  we  may  already  have  K-evidence  of  the  un-bloated  hypothesis,

without knowing it. But devising an experiments and understanding what we are doing



184

allows us conscious access to the evidence, and fine tuning/tinkering allows us to direct

the experiment at the target we need for it.

non-circularity

Holistic  rhetorics  of  theory-acceptance raise worries about circularity.  A new belief  is

acceptable in terms of the coherence of the combinations of it and other theories were is

accepted. But then the value of independent guesses may be judged by letting each

support the others.143 The use of experiment to de-bloat theories by giving relatively

direct connections with the origins of the data will protect against this. 

The possibilities for circularity are much less with evidence derived from experiment.

One reason is  the defences against  bloated theory, just described. Evidence will  less

often and accrue to extravagant theories, favouring particular sub-theories of them. One

route to circularity is thus blocked. Moreover an experiment compares a hypothesis, or a

pair of hypotheses, against a body of data directly, without referring to theory except

inasmuch as it mediates the comparison.

These  protections  are  not  foolproof.  The  danger  I  shall  discuss  concerns  statistical

models. I have argued that they are usually rather general causal hypotheses. They are

rarely stated very explicitly.  The danger of  circularity  is  obvious.  Experiment gives a

much-used  protection  here.  (It  is  also  protection  against  circularity  in  hypotheses

generally, but I will not discuss that.)

143  Worries about this were one of the motivations for foundationalist epistemologies in the first half of the 
twentieth century.
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The core idea is that for designing an experiment we need something less ambitious than

an explanatory theory, sustained by straightforward and direct evidence. Such causal

models are typically made by producing a limited number of equations most of whose

variables  are  observable  and designed to  give  estimates  of  a  small  number  of  non-

observable variables suitable for the numerical needs of a particular experiment. Often

variables needed for a general account of the origins of the data are omitted if they are

irrelevant to the contemplated experiment. These are tested against real data before use,

to give confidence in using them for these experiments. For different types of experiment

different models will be needed. This is frequently possible and allows experimentation

which tests more explanatory theory.144  If the theory survives testing then it rather than

the model gets the credit. The model can then be discarded, and further testing often

uses different models.

Two further factors increase in the protection against question-begging circles. The first is

the structure of experiments as described in chapter 2. If that is anything like correct,

there is a core of an experiment that consists not of anything conceptual or theoretical

but of a process occurring with a definite input and definite results. It is always possible

to replicate this indicative process and reinterpret it in the light of subsequent or different

theory. 

144  This is something that philosophers and sociologists of science have become increasingly aware of. 
Early works are Hacking (1983), Franklin (1986), Gooding and others (1989.) A recent example from 
climate science is Steyn and Galmarini (2008), and in recent philosophy of science see Cartwright (1999),
Morgan and Morrison (1999) especially chapters 1, 2,3, Wilson (2017). Alirio Rosales suggests to me the 
example of Einstein's prediction of the movement of the perihelion of Mercury which contrary to the way 
the story is sometimes told, did not involve a deduction from the full equations of general relativity but a 
model constructed by simplifying them under restrictive assumptions.
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finding experiments

To break out of  evidential  cycles and split  up bloated hypotheses we need to devise

experiments. Sometimes they have to use novel strategies. But this is something that is

always essential in science anyway. So we can welcome the need, as pushing towards a

helpful frame of mind.

Meselson and Stahl's isotope approach, referred to in chapter two, could also be used as

a test of the elements that are components of inheritance, separate from the whole DNA

hypothesis. Cajal's application of simple staining techniques to neural tissue to make the

connections  of  neurons  visible  independently  of  assumptions  about  the  functions  of

neural networks could also be used for testing components theories. And it avoids the

element of circularity in judging the roles of brain regions using the assumption that the

brain  has  component  parts  specialized  for  particular  purposes.  (Since  mapping  of

connected  regions  plus  data  about  the  effects  of  localized  damage  would  show

correlations  between  these  extended  regions  and  behaviour.)  Einstein's  suggestion,

turned into a definite experiment by Perrin, that components of the molecular theory of

gases and liquids could be tested by controlled Brownian motioncould be used to test the

molecular theory independently of assumptions about either the existence of molecules

and the distribution of momentum within them. It could also be used to isolate the bare

molecular structure hypothesis from the need for correlations with thermodynamics, or

the rather abstract but influential ideas that whatever is going on behind the gas laws at

a microscopic level as an element of randomness.
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accumulation 

The limited scope for circularity allows experimental results and methods to accumulate,

surviving  changes  of  doctrine  and  improvements  of  theoretical  technique.  The

experiments that were used to support both particle and wave theories of light can still

be  performed,  even  though  we  think  that  there  are  wrong  assumptions  behind  the

presuppositions and interpretations of both. They are often are performed as parts of

school and university physics courses.

There are two very different but complementary sources of scientific accumulation. The

first is the mass of past experiments, with their transitions from initiation to outcome,

the skills developed in performing them, and the inferences needed to make sense of the

data they yield. The other is the library of theory-constructing techniques, many of them

mathematical, that can be transplanted from one topic to another. We can handle wave

equations whether they are applied to electromagnetism or massive particles or traffic

flow; we are used to extremal principles throughout dynamics; we know how to adapt

computer  models  from  climate  prediction  to  population  biology  to  economics.  The

techniques themselves are neutral. They are not true or false, supported or undermined

by evidence, but are a resource for making things that are.145 

The accumulation of experiments and the accumulation of theoretical techniques assist

one another.  Experiment  provides  relatively  un-theorized  material  waiting for  general

formulation.  When  the  library  of  techniques  contains  formulations,  solutions,  and

145  This is an extremely weak form of structural realism (highlighting the structural aspect but neutral 
about the realism aspect). It is (even) weaker than what Ladyman (2016) calls epistemic structural 
realism.
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approximations that we have already seen how to transfer from one area to another, we

know how they can represent the transitions from trigger to target in ways that model

ranges  of  experiment  without  commitment  to  claims  about  what  lies  beneath  these

transitions. (It is not that we do not want to understand such underlying processes, but

the more that experiments can be described as indicating rather than presupposing them

the better.) The accumulation of theoretical devices thus facilitates the accumulation of

autonomous experiments.146 

sharing and attributing: the wide net

The  characteristics  of  experiment  that  lead  to  accumulation  also  help  epistemic

cooperation involving a number of people with different skills. When individuals acting

individually try to coordinate their inquiries they run up against differing interpretations

of  their  experience,  different  understandings  of  the  terms  and  their  theories,  and

idiosyncratic degrees of belief. (What one person takes as established fact another may

take as an interesting though dubious conjecture.) The accumulation of  experimental

results and their susceptibility to accumulating theoretical devices, though, gives a much

more neutral place for shared activity. (They are much less conceptually sensitive.) The

accumulating facts about an experiment are just how it was set up, physically, and what

events it produced, and the theme of a free-ranging technique is that one can follow this

kind of recipe to get this kind of result. Both of these can be easily communicated across

differences of expectation, attitude, and theoretical vocabulary.

146  This is near to what Hacking (1992) calls ”stability”.
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The resulting epistemic cooperation puts many brains to work on the same problems and

combines many sources of data. Other capacities can be applied to shared projects for

the same reasons. There is more that we can know this way. The result is knowledge

because it is sensitive to the facts, and indeed there are more resources for sensitivity

than when restricted to individual  belief,  since the responsiveness can be distributed

among many co-workers.

the optimistic aspect 

Tuneability,  causation,  separability  non-circularity,  accumulation,  shared  resources,

suggestiveness: all major epistemic desiderata. These make experimentation our most

powerful tool. (Just as they make the informal precursors of experimentation the most

powerful source of non-scientific knowledge.) 

There is a downside, though. The finely tuned experiments needed for this bonanza are

not  always  possible,  sometimes  because  we  do  not  have  enough  control  of  the

phenomena and sometimes because of limits in our capacities to design in advance and

interpret afterwards. To run causally fine-grained experiments we need to produce fine-

grained causal processes. That poses technological and theoretical problems. As a result,

experimentation has to be part of a larger epistemic and technological context. A vital

part, essential to the success of the whole project.

the sceptical part
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Early epistemologies thought about scientific method in the context of general human

strategies for acquiring knowledge and their prospects of success. They often contrasted

the understanding of nature proffered by emerging science with the traditional lore of

their cultures, which they deemed hard to justify and very often false. In the subsequent

development of the subject, particularly after the middle of the twentieth century, this

ambition  was  lost,  although  much  was  gained  in  terms  of  clarity  and  psychological

realism. The task was split and passed to other disciplines. On the one hand philosophers

of science thought about the characteristic methods of scientific inquiry. And on the other

hand  statisticians  honed  detailed  advice  about  the  structure  of  inquiries  and  the

interpretation of  data.  Now no working scientist  faced with a  problem about how to

investigate a topic will take her questions to an epistemologist. Her aim is to acquire

knowledge but the theory of knowledge is largely irrelevant. I suspect that something

similar is true of many issues in nonscientific inquiry.147

The role of statistics is not going to diminish. If anything it is going to increase, although

the interpretation may change. But there is  still  a lot to say about how we think of

evidence  and  its  relation  to  the  aims  of  inquiry,  in  particular  to  concepts  such  as

knowledge which register the tightness of the connection between thought and fact. My

line has been that the particular form our concept of knowledge takes is a special case of

more general conditions of fit between what we think and the way things are. And in

terms of these conditions there is room for an updated form of scepticism.148 Much of

what we believe, including central scientific doctrine, is not connected to the facts as well

147  Coady (2012).
148 It is a form of scepticism about knowledge rather than early modern scepticism which doubts that we 

have good reasons for our beliefs and then sometimes describes its conclusions in terms of "knowledge". 
Sorting out the two scepticisms would have been beyond our philosophical sophistication before the 
twentieth century
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as we might hope. If we want improve the situation the most promising means is to

expand  our  repertoire  of  experimental  techniques.  It  is  likely  that  more  powerful

experimental techniques will require experiment in the sociology of science also, as the

number of people and the variety of distinct skills they draw on will surely become more

and more intricate.149 Skills honed by thinking about human knowledge are a real but

very small part of the spectrum.

But there are no guarantees and in some cases the prospects are daunting. It is far from

obvious that we will  ever see how to make experiments to back up the explanatory

power of the quark model of neutrons and protons. There is room for doubt that we will

move beyond the standard model of elementary particles. Perhaps theories of gravitation

and of the other fundamental forces will never be united. Perhaps the best we will be

able  to  do  in  order  to  get  a  detailed  grasp  of  how  the  human  nervous  system

accomplishes complex tasks will be to simulate it with artificial systems whose detailed

workings are equally inscrutable to us. Perhaps fundamental physics or brain science will

require teams of  experimenters that are too large and interact  in ways that are too

complex for our inflexible social capacities. The list of topics and reasons where progress

might stall is long. And, the main point now, this scepticism about future progress is

reinforced by an emphasis on experiment. Even if we can make satisfying theories of

these things, with enough explanatory power and few enough plausible alternatives that

we take ourselves to know them, we may be frustrated searching for the experiments

149  Knowledge has always been shared, and there has always been something deeply counterintuitive
about purely individual knowledge. When people express sceptical rhetoric in everyday life they usually
agitate about the possibility that "we" are subject to mass delusion, although on standard philosophical
sceptical scenarios the existence of other people is as doubtful as that of the usual objects of thought.
But for the person in the street deep error about others is even harder to grasp than deep error about
the rest of the environment.
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that give a firmer and more fruitful grasp of them. We may know without knowing as well

as we want to.

The scepticism touches how we think about human knowledge as well as our capacities

for achieving it.  Reflection on experiment suggests that we can often achieve higher

standards than those we are usually content called knowledge. But we often fall short of

them, also. If we held ourselves to the standard of knowing as well as we do at our most

successful then we would have to conclude that we often fail.
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