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learning by doing: mathematical knowledge, truth, causation 

Adam Morton 

fairly polished DRAFT.  

One cannot invent the structure of an object. The most we can do is to patiently
bring it to the light of day, with humility — in making it known it is "discovered". If
there is  some sort of inventiveness in this work, and if  it happens that we find
ourselves the maker or indefatigable builder, we aren't in any sense "making" or
"building" these structures. They hardly waited for us to find them in order to exist,
exactly as they are! 

Alexandre Grothendieck  Récoltes et Semailles

Physical human animals know a sliver from the seam of abstract mathematical fact. This

prompts the "PB reaction", from Plato to Benacerraf and beyond: “but these domains are

so different”.1 The reaction prompts a rejoinder "no, they aren't", which can take the

form of assimilating mind to the abstract (Plato and Platonism down to our day) or of

assimilating mathematics to the physical (20th century formalism and its contemporary

continuations). Neither is necessary. We can understand mathematical knowledge and

the ways it is acquired in a generally causal way appropriate to thoroughly causal beings,

while understanding mathematical fact in a way that is neutral about its causal status.2 A

contemporary understanding of knowledge is consistent with a traditional understanding

of mathematics as describing an abstract non-physical domain. It is also compatible with

a more naturalistic picture of mathematics. This paper shows how the combinations are

possible. 

If  knowledge  were  justified  true  belief  the  task  would  be  different  and  more

straightforward.  An all-purpose  account  of  truth  could  be  glued to  a  requirement  of

rationality  and  “all”  that  would  be  needed  would  be  an  account  of  mathematical

rationality. Proof would be at its centre, as evidence is at the centre of empirical belief.

But knowledge has become a more causal concept and we now understand rationality as

1 Plato Meno 80-86, Phaedo 72-3, Theaetetus 189, Benacerraf (1973), Steiner (1973), Reznik (1975), 
Jubien(1977), Hale and Wright (2002).

2 Taking the worry at face value can prompt drastic claims, as in Callard (2018). I am not arguing that any 
such claims are wrong, simply that they are not needed.
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a diverse and diffuse business with links to causal processes that result in true belief. So

the task of linking abstract objects and particular brains faces more obstacles. My claim,

though, is that all-purpose accounts of knowledge and truth are available and indeed

natural, and have no incompatibility with a physical conception of human minds and their

thinking. In fact, a causal connection between mathematical facts and our beliefs about

them emerges as a non-mysterious natural matter.

The idea is somewhat subtle but straightforward. A rough motivation can be given with

an image, so let us begin with that.

feeling truths

We often learn as a result of what we can and cannot do. This is clearest not with vision

but  with  touch,  where  sensation  and  manipulation,  as  the  word  suggests,  are

inextricable. If you reach in the dark to feel the shape of an object you press it with your

fingers and experience its contours so that by some combination of these you emerge

with information about its solidity and outline. Or suppose you are finding out how many

coins there are in your pocket. You reach in and find that you can put your first, second,

and  third  fingers  on  the  coins,  while  the  thumb  roams  around  and  finds  no  more.

Accomplishing  this  physical  act  of  counting  tells  you  that  the  coins  form  a  three-

membered set. (They and your fingers satsfy Hume’s principle, that equinumerous sets

are those that can be put into one-to-one correspondence; but you know this only by

moving the fingers.3) The crucial difference is that the basis for the belief that is formed

is information about which actions have succeeded. It is not itself evidence about the

manipulated objects, although features of these objects shape tactile success and failure.

Another example, closer to what happens in mathematics,  is seeing whether a plane

figure is a projection of a three-dimensional shape by trying mentally to move its vertices

towards or away from one. There is no new perceptual contact with the figure, just the

3 Hale and Wright (2002) discuss Hume’s principle in connection Benacerraf’s problem, leaving fingers out 
of it. There is impressive evidence that numerical thinking uses brain regions associated with the fingers 
— Soylu (2019), Buijsman (2019), Penner-Wilger and Anderson (2013) — and thus that counting by acts 
of touching and pointing is deeply connected with numerosity. Fingers appear in Kant's discussion of 
arithmetic (Critique of Pure Reason B 15–16).
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awareness  that  an  attempt has succeeded or  failed.  Whether  or  not  we classify  the

activity  as  perceptual,  it  is  carried  out  in  causal  isolation  from the  figure  and gives

information about it because mental activities have particular results.4 

When we explore mathematical possibilities we handle them by trying out various lines of

argument,  various  images  and  simplifications,  various  definitions  and  symbolizations.

Seeing where these lead, including the times when they lead nowhere, tells us how the

topics  constrain  our  thinking.  The constraints  are  the  mathematical  facts,  a point  to

return  to.  Besides  the  link  between  basic  arithmetic  and  the  fingers,  elementary

mathematical thinking involves the ability to summon and shape spatial imagery, and

measuring,  gathering,  or  rotating  in  space.5 When  things  become  even  a  little  bit

sophisticated it is important to find dedicated quasi-linguistic representations of them,

and symbolic activity becomes important.6 All this needs more detail, but for now the

point is the way that we can learn as a result of what we can and cannot do.  

the unity of knowledge 

There are many ways of learning something mathematica. You can prove it from first

principles; you can derive it from a powerful general theorem (and both of these can be

done both meticulously and with some helpful handwaving); you can take it on authority

from a trusted book or teacher; it can just seem so obvious to you that you would not to

try to get it from anything else; you may be convinced from pondering over a diagram.

All of these, and more, are familiar parts of our histories. And all of them can go wrong

even when it seems that everything is in order. Each employs some capacities that are

not exploited in others. So each will  have connections with thoughts that we do not

usually  think  of  as  mathematical.  One  complicated  and  revealing  case  is  when  a

mathematical result with a diversity of applications slowly emerges from a line of thinking

in  physical  science.  (Besides  the  emergence  of  geometry  from terrestrial  surveying,

4 Kanamori  (2018)  discusses  aspect  perception  in  connection  with  mathematics.  His  interest  there,
however, is not with mathematical knowledge but with the effects of conceptual point of view on the force
of a concept.

5 Dehaene and others (1999), Dehaene (2009). Margolis (2019) gives evidence that the apprehension of 
even small integers draws on a dedicated number sense.

6 Lewis (1991) is admirable for its presentation of mathematics in plain English. But, enticing though this 
is, it’s harder that way. See also Morton(1996).
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which left echoes up to the twentieth century, and the present mathematical stimulus of

string theory, examples where the transition was clear and eventually completed were

the emergence of the calculus of variations from extremal principles in physics and the

emergence  of  abstract  probability  theory  from discussions  of  practical  decisions  and

empirical  evidence.)  There  is  then  a  pull  to  coherence  in  two  directions,  to

mathematically related thoughts and to procedures and beliefs of the nonmathematical

kind.7 This often connects what we take to be mathematical knowledge with what we

take to be knowledge but not in mathematics. Since we call both of them knowledge and

since we are often unsure which side of the line we are on, we cannot think that knowing

in mathematics is radically different from knowing anything else.

The unity cannot consist in procedurally correct proof, since it is not associated with all

sources of knowledge within mathematics, let alone those in the borderland. Proof must

be a particularly important means to some more general end. And considerations that

show that some shatterproof procedures will lead reliably to true results must get their

significance from the links with the more general ideas of reliability and truth. In the last

quarter of the previous century ideas about how to characterize the dependence of a

belief on a reliable process began with a simple emphasis on deliberate processes which

for solid causal reasons tend towards true results, as in Goldman (1976). These demand

more control than is intuitively required, tend towards asking that knowledge lead to

knowledge of  knowledge,  which also seems too strong, and are hard to fit  to  semi-

automatic  modes  of  everyday  awareness.  The  next,  still  generally  causal,  accounts

replaced this with conditions of  causal  attunement,  often expressed in counterfactual

terms. If the facts had been different the result would have been a different belief (as in

Nozick, discussed below). These were succeeded by current anti-luck formulations, often

with a flavor of safety (as in Sosa and Prichard, discussed below). The original intention

was always to formulate a condition requiring the right kind of causal connection between

the fact and a resulting belief.8 The belief is true because the facts are as they are. It is

7 Quine (1981 and elsewhere) famously argues that the scientific pull generates the mathematical one. 
There is an enormous literature on this, helpfully surveyed in Collyvan (2019).

8 “Knowledge  first”  approaches,  inspired  by  Williamson  (2000),  refrain  from  defing  knowledge  with
conditions on belief.  That  is  consistent  with  stating non-definitional  principles  linking knowledge and
belief. On a more drastic approach, also suggested by Williamson, one would avoid the concept of belief
altogether. My discussion mentions “beliefs”, “conclusions” and other representations, as a way of leaving
the issue open, and hinting that a deeper discussion may need attention to the bearers of knowledge. I
suspect that one can talk simply of states that show the appropriate sensitivity to possible variations on
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possible,  however,  to attempt to reformulate the machinery in non-causal  terms.  My

claim is that this is not necessary, because there are natural conditions with plausible

causal interpretations which are generally congruent with the contemporary orthodoxy

and apply as well in mathematics as elsewhere. In mathematics too a belief can be held

because the facts are as they are.

The link between the various kinds of knowledge, if contemporary epistemology is on

anything like the right track, is thus the generally causal connection between thinking

something and its being true. Various forms of causation can make the connection: the

direct  causal  relation  between  events,  causal  laws  of  nature,  and  counterfactual

(subjunctive) conditionals are all possible forms. In all of them, and others, there is a

general becauseness that can connect the results of a variety of inquiries to the intended

objects and properties.9   

A central reason why we care about knowledge is that it indicates how secure a person's

grasp of the truth is, and, roughly correlated with this, how well suited to produce further

truths the origins of a particular belief are.10 It is hard to see how a non-causal account

of  knowledge could deliver  this.  However while  truth is  a binary business the truth-

producing capacity of the thinking behind a belief comes in degrees and can be measured

in many ways.  When we say that someone, for example, knows as a result of their

teacher's instruction that the derivative of sine is cosine we are discussing not simply the

relation between the person and the fact of basic calculus but implicitly the route she

took to her acquaintance with it and the varied capacities of that route. It is a reasonable

assumption that causally nearby situations often resemble those that are likely to occur,

so that more truth among possible situations at a time translates roughly into more truth

among actual situations over time. I doubt that we would have much use for the concept

of knowledge if this assumption were very misleading. Learning that the teacher's grasp

actual situations. Not now. 
9 Knowing how can take a place here beside knowing that, since it reflects facts about which actions will 

have which effects. It is also related to causation in the opposite direction, from the agent to the world, 
which is significant for the general theme of this paper.

10 Why knowledge as an indicator of reliability? There is a strand in the philosophy of science which 
dismisses the concept of knowledge as a rough commonsense fudge. I think that philosophers who take 
this line underestimate how flexible knowledge is, how tunable to different needs, as this paper 
illustrates. Talk simply of causal connections between thoughts and objects is not adequate here: we 
want the right kinds of causal connections, and modal epistemology supplies them. Still, if there were 
another way my general strategy should apply to it also.
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of basic calculus is shaky would suggest that their instruction on this topic is likely to be

flawed and thus that although the student ended up with a true belief in this case in

similar cases there may well  be trouble, how frequently and how different the cases

depending on how stringent our criteria for knowledge are.11 So unless our standards are

lax the student’s true belief falls short of mathematical knowledge. But they should too

demanding  either,  since  they  should  fit  real  people  well  enough  that  accessing  a

particular person's grasp of  a particular fact will  tell  us something useful  about their

future inquiries and their value as a source of testimony.12  

Are higher standards appropriate to mathematical knowledge? The question will  recur

throughout this article. On the one hand knowledge represents a desideratum, something

we would like as much of as possible, other things being equal. On the other hand what

is possible, or feasible, or worth the effort, is usually limited, and varies from case to

case and topic to topic. So applications of the concept must find a trade-off between the

two. But there is no inevitable balance-point for this trade-off, and the question is the

uniformity of the balance between achievable aim and adequate accomplishment.

sensitivity and safety

There are two basic strategies for describing fact/belief connections, and they differ for

necessary  truths  such  as  those  of  mathematics.  To  see  the  contrast  between  them

compare two formulas, both counterfactual conditionals giving simplistic criteria for a

proposition to be known by a person, that loyalty to the two strategies might suggest.

(Once we move beyond these simple conditionals the contrast between the underlying

approaches is less stark, as we will see. But the contrast is still revealing.) The sensitivity

conditional requires that if the facts had been otherwise the belief would not have been

held. If ~p then ~B(p). The safety conditional requires that if the person had formed an

incompatible belief then the facts would have been different.  If B(~p) then ~p.13 They

11 Most of almost anyone's mathematical knowledge depends in part on testimony and instruction. This is
true of all kinds of knowledge, but there has not been much attention to the mathematical case.

12 Welbourne (1986) and Craig (1990) describe the role of knowledge-ascriptions as evaluations of 
testimony.

13 The grandparents of these formulations are Robert Nozick and Ernest Sosa, though neither they nor
those they influenced insisted on anything so simplistic.  Nozick (1983), part 3, Sosa (1999). Note that
Nozick uses a somewhat non-standard conditional, and the analysis is nearer to a biconditional than
would appear from this  and many expositions.  See also Greco (2016),  Pritchard (2018),  Rabinowitz
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are not equivalent essentially because the counterfactual does not contrapose, but this is

a  front  for  a  deeper  difference  between them.14 Both  ask  for  a  match  between the

reasons that the person has the belief and the facts that make its content hold, but the

sensitivity conditional looks first at the facts and requires that the belief be connected to

them while the safety conditional looks first at the belief and requires that the facts be

connected to it. Neither insists on a causal connection running in just one way. Safety is

not to be taken as a spooky influence of thought over things, but as a more flexible

description of  the target.  The intention is  better  presented as  "she would only have

believed that it was false if it  was false", or "if she had believed the opposite it would

have been because the opposite was the case". (If she had believed that the minimum of

the function was at x = 3, instead of at x= 0, it would have been because the function in

question did have its minimum at 3. Compare "if the damp match had lit (it would have

been because) the air was unusually oxygenated".) Similarly, sensitivity need not require

one-way influence of fact on belief. The reason that one would not have had the belief if

things had been different might be that things would have been different because of

one's variant belief, as in some cases of self-fulfilling self-knowledge. (If the lever were in

a different position she would have put it there and would have been aware of what she

had done.)

Still  sticking  with  the  simple  parodistic  formulas,  sensitivity  runs into  problems with

necessary objects of knowledge. "If the square root of 144 were not twelve then p" is

either unevaluable or trivially true for any p. Safety   also has problems: "if p then the

square root of 144 would not be twelve" is unevaluable or trivially false for any true p.15

But in this case there is an appealing fix. Suppose that someone is idly calculating square

roots and comes to the conclusion that the root of 144 is twelve. While still operating as

a fine arithmetician she could easily  have chosen a different calculation,  and arrived

instead at the result that the root of 169 is thirteen, or that the cube root of 1728 is

twelve. She would not have concluded that that the square root of 144 is 11 or that the

(internet). 
14 For the failure of contraposition see Bennett (2003, pages 143-5), building particularly on Lewis (1973). 

Bennett's own account of counterfactuals is particularly relevant to the present project because it 
minimizes the difference between regular and "backtracking" conditionals (page 208).

15 The counterfactual is applicable in one case. Suppose that if a person had failed to believe a claim it 
would have been because its terms would have meant something else, which would have been true. (For 
example, she would not have agreed to "5+2 = 7" if the numerals were interpreted base 5.) Then "if not 
belief then content not true" is okay I shall ignore this complication in what follows.
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cube root of 1728 is 12.3. Whatever conclusion in some relevant range she had arrived

at, because of her capacity for arithmetic it would have been a true one. 

For dealing with knowledge of necessities a focus on alternatives to beliefs as well as on

their negations is valuable. Then weaknesses in a person's grasp of a truth will show up

as both contingent and necessary falsehoods that she might have arrived at. The vital

question  becomes  the  range  of  alternatives  appropriate  to  a  particular  person  in  a

particular context when arriving at a particular conclusion.16 But before grappling with

this consider the kind of link between fact and belief that is suggested. It is causal in an

interesting way. We are dealing with a causal process that results in a belief and whose

further outline can be described by specifying what other conclusions it would lead to

under other conditions. Any explanation of how this occurs will depend in an essential

way on the truth of the belief. (Put rhetorically: Try explaining why someone believes root

144 to be 12 on the assumption that root 144 is not 12. But see below.) So in this sense

part of the reason why the person has the belief is the fact that makes it true, plus other

closely related facts. The activity that results in the belief has a certain shape, which

reflects the fact which makes the content of the belief true. It is like the way that when

you are adding integers by counting on your fingers the way you touch your fingers is an

image of  the sequence of  the integers themselves. I  shall  return both to the formal

resemblance and to the metaphor.   

Another reason for considering alternative conclusions that the person might well have

arrived at is that the actual conclusion may be correct and moreover established by the

person's reasons, for example by a solid proof, but still be a dubious case of knowledge.

This  will  happen  when  the  person's  grasp  of  the  solid  proof  they  have  produced  is

wobbly; they could easily have come up with a fallacious one without realizing it. (A rank

amateur “solves” an outstanding problem in number theory, which seems to attract rank

amateurs. The solution is good but there are many fallacious variants that he would have

been as content with.) Similarly,  someone could believe a mathematical truth on the

basis of a proof that was in fact a valid proof of something entirely different. Moreover

someone could be in this situation not only in actuality but in near alternatives to it.

16 These are different from the alternatives considered in the "relevant alternatives" approach to knowledge.
For one thing, they represent variant states of the person rather than variant objective possibilities.
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I draw a couple of morals from these examples. First, that we should distinguish between

two  kinds  of  conclusion.  There  are  conclusions  that  a  person would  draw in  nearby

circumstances  as  a  result  of  different  lines  of  thinking,  for  example  the  beliefs  that

different deceptive teachers, or the same teachers on a different whim, might give. And

contrasting with this there are conclusions that a person would be led to by the same line

of thinking if circumstances were different, as they would be if for example the person

were in a hastier or more cautious mood. Alternatives of the second kind are the more

significant ones in assessing the epistemic status of a belief, at any rate a mathematical

belief.  Second,  in  both  of  these  cases  we  should  consider  more  than  just  a  few

alternative beliefs. We should consider enough possible but not too remote alternatives

that we have a real grip on the person's tendencies to true conclusions.

Some of the difficulty of describing causal relations between mathematical necessities

and contingent facts such as people's beliefs will also hold between milder necessities

such  as  laws  of  nature  and  particular  contingent  events.  Your  belief  in  universal

gravitation is surely a result of gravitation itself, among many other things, but the fact

that gravitation is  universal  plays a different role  than,  say,  your thinking about the

evidence.  It  is  a  condition  under  which  causes  of  contingent  events  such  as  the

acquisition of the belief itself can take place. In order to countenance the conditions for a

particular thought we do not have to consider mind-boggling counterfactuals such as "if

there was not a gravitational force between all  massive objects then I would not be

having this thought". The move from event causes to background conditions is part of a

strategy to sidestep this. 

I shall consider epistemic and semantic theories where the major role is played by cause-

enabling conditions, rather than causal relations between events. They too stand or fall

with  the  way  the  world  actually  works,  and  they  too  engage  with  the  physical

mechanisms  of  thought  and  how  it  connects  with  the  environment.  Of  course,  no

category of causality alone is enough to establish knowledge. A thoroughly unreliable

belief-acquisition can be an effect of the fact that makes it true together with a cause

which operates because of this fact, and similarly for more sophisticated causal accounts.



10

(Action can also operate by enabling rather than directly causing. One can be responsible

for a coin's landing heads to the extent that one got it out of one's pocket and tossed it

so that chance could operate. Not realizing this might make our control of random events

— the most contingent of  all  — seem as mysterious as our  knowledge of  necessary

facts.17) 

kinds and seriousness of exceptions

The topic is mathematical knowledge rather than knowledge in general. But some of what

has been labelled as mathematics belongs to the same category of less than ultimate

necessity as some of what does not get so labelled, and any sharp demarcation will be

rather arbitrary. Examples are results from before the late nineteenth century separation

of pure mathematics from abstract physics. Moreover, it is essential that mathematical

knowledge emerge as real knowledge, continuous with other kinds, not as the result of a

deliberate gerrymander. So we need at least an outline of knowledge that includes a full

range of its sub-species, and allows them to merge into one another.

A person has a belief obtained by the use of a method in a particular situation. The

combination could approach divine omniscience by hyper-strong perfect counterfactual

correlation; the person would have a belief if and only if it is or would be true. That

would give both the primordial sensitivity and safety formulas. It would be both perfectly

safe  and  perfectly  sensitive,  but  is  not  an  ambition  for  the  likes  of  us  when  the

conditionals cover any serious range of worlds.18 For one thing, the result would not serve

many of the purposes of knowledge, such as evaluating the credentials of informants.

There is a range of ways we can weaken the force to a human scale while balancing

between sensitivity and safety. At one end of the range there are conditions appropriate

to successful apprehension of the immediate environment using our powerful but limited

and  inflexible  capacities.  The  apprehension  could  easily  not  have  happened  and  a

reasonable  aim  is  that  it  track  the  surroundings  accurately.  A  simple  sensitivity

17 I have argued for a thoroughgoing duality between knowledge and accomplishment in Morton (2012), 
(2013).  

18 Any candidate for knowledge is both true and believed in actuality, so that when the range of worlds is
limitingly narrow the biconditional will be within the reach of human knowers, since vacuously true. But
the resulting concept of “knowledge” won’t be very useful or very close to standard requirements..
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conditional will do this, requiring that when there are real or possible slight differences in

the facts there will be a change in belief, if only to agnosticism. But this surely asks for

too  much.  The most  aware  person in  the  world  will  have  blind  spots;  there  will  be

scattered  variations  that  she  will  not  notice.  It  also  asks  for  too  little.  It  counts  as

knowledge a capacity that can handle only the very simplest departures from the way

things are, as when a person could detect an object had it been 1 mm from where it is

but not if it had been any further. So some room for exceptions must be built into this.

At the other end of the range lie mathematical and other conclusions that result from a

lot of thinking. Then the belief-forming processes are much more flexible. They can lead

to a much more varied output but the range of facts that they can detect reliably is

limited and exception ridden. Mathematicians may be able to resolve some puzzle when n

= 1, 2, 3 , 4 but find it impossible for n = 5, 6. (We can prove Goldbach’s conjecture for n

up to 4x1018 so  this  gives an example with n a multiple  of  1018.)  Mathematicians  a

century  or  more  later  might  understand  why  completely  different  techniques  were

needed for the recalcitrant cases. So it would not be a sensible requirement that we

reliably produce true conclusions when the facts are even somewhat different. Instead,

the primary aim should be to use our thinking capacities accurately, avoiding errors. Now

a simple safety conditional is a beginning candidate, requiring that the conclusions that a

person could easily have arrived at be true, even though there may be possibilities very

near to them that correspond to none of the person's beliefs. Again this is unrealistically

demanding. The best mathematician in the world can have a few propensities to slip up

even on the way to perfectly solid and well understood proofs.19 So again we should allow

carefully  placed exceptions.  But  we should  place  them so that  they still  require  the

agent's reasoning to have a pretty powerful falsity-avoiding capacity. There will always be

many alternative histories where a person who actually arrived impeccably at a true

conclusion would have ended up with a different and false one, but some of them are

more of a disqualification to counting the actual belief as knowledge.

The aim, then, is to place exceptions in the unrealistic perfect counterfactual correlation

so as to make it  suitable for real human knowledge of various kinds. This will  mean

19  There is a long list of slips by the immortals, including Lebesque and Cauchy. I don’t know anywhere 
they are collected in one place. To complicate the picture, there are defective proofs butressed by 
powerful other considerations.
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tuning the exceptions so as to accommodate human knowledge of different topics. And

doing that will mean distinguishing between ways in which a person's possible situation

might differ from the actual one: in the method used, the belief she has arrived at, and

the  situation  she  is  in.  There  are  various  combinations  of  these  factors.  Things  will

inevitably go wrong for merely human inquiry, often for no fault of the inquirer; the task

is to separate forgivable possible mishaps from seriously disqualifying ones.

It is bad when an inquiry results in a false belief, and methods that result in unacceptably

many falsehoods are obviously to be avoided. But there are trivial falsehoods, such as

thinking that there are 3,000 hairs on one's left arm when in fact there are 3,237. A

crude measure of triviality is the range of possible worlds where the negation of a belief

is true (one might call this the degree of necessity of its content). When a content holds

in no possible world then it is very much not to be believed, although there may be no

easy way of avoiding it. More generally, when the content of one false belief holds in a

proper subset of the worlds where the content of a second belief holds, then arriving at

the first belief would be a more serious error than arriving at the second. It is also bad

news when someone could easily  have gone wrong, while errors that are in  a more

remote neighbourhood of actual performance are less worrying. 

So starting with perfect superhuman correlation between propensity to believe and the

truth of the resulting beliefs, there are two broad kinds of exceptions that we should

permit in some amounts, and each of these two kinds comes in varying degrees. The

broad kinds are errors made by following the method which was actually used though in

other  possible  situations,  and  those  made  by  following  a  method  that  would  be

prompted by a possible situation. Errors of both kinds are more serious when the range

of possibilities is greater, that is, when the mistaken content fails to hold in a greater

range of situations or when the process that leads to it occurs in a greater range. These

need to be weighed against one another. The generally less serious category is errors

that might result from a remote variant situation, and the least serious of these are

errors which are more remote from actuality or which produce a result which is false in

fewer possible worlds. (Or we might say "with a greater potentiality to lead to falsehood",

which is metaphysically less contentious but runs separable factors together.) And among

these the least serious are where either the the contrary fact or the belief in it is located
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at modally remote situations. The most serious category is, correspondingly, when the

actual  method could  easily  have led to a  false  conclusion,  even more  so  when that

conclusion is necessarily false, even even more so when it is an ultimate necessity such

as  a  logical  principle  rather  than  say  something  unchangeable  which  depends  on

contingent events (for example an identity between contingent individuals). Less serious,

though potentially disqualifying, is when the person could easily have used a method

which could easily have led to a falsehood, and among these cases the least serious is

when the falsehood is a pure contingency, especially a description of a random event.

Between these extremes there is a gradation of significance for disqualification. Charting

this  gradation  precisely  would  mean  an  explicit  weighting  or  trade-off  between  the

numbers  of  potential  cases  in  the  relevant  categories,  degrees  of  remoteness  from

actuality, and the person's actual versus possible methods of belief acquisition.20

Knowledge has a characteristic specificity. The sources of a particular belief are linked to

the truth of a particular proposition. When the emphasis is more on sensitivity it is the

proposition bears more of the weight of specificity. The specific fit is best indicated by

varying it. When the emphasis is more on safety the belief bears more: its variariation is

the better index. In both cases the point is the specificity, though it is most easily and

clearly described differently in different cases. 

I doubt that there is a precise and objective way of making the trade-offs. They have to

remain rough and qualitative. But this fuzziness allows a single description of knowledge

of different domains. It also allows stronger and weaker interpretations of knowledge,

consistent with effects of context, ideology, and individual limitation. (It does not easily

yield a measure of strength of interpretations, though. The most we can say is that one

is generally stronger or weaker than another.) But even taking the criteria of seriousness

as a rough guide, they give mathematical knowledge a safety-biased orientation, where

the range of contents that beliefs obtained by the method actually used is dominant. For

the processes that lead to mathematical  conclusions when bungled will  often lead to

drastic impossibilities; the person is usually modelling their thinking on patterns that are

20 These will usually be infinite, so comparisons of size are problematic. Note how beliefs based on thinking 
that typically leads to necessities are automatically directed towards safety-like conditions, and more 
contingency-directed beliefs towards sensitivity.    
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directed at necessary truths, and is usually choosing between alternatives in vocabulary

that produce either necessary or impossible claims.21 

This description of mathematical knowledge supports the comparison with a certain kind

of knowing by doing. Suppose that you are wrapping a malleable plastic substance onto

an immovable solid shape, in the dark. (Immovable by your efforts, that is.) You are

going to estimate the contours of the solid by the ways you can wrap the squishable

stuff. We want to detect flaws in your estimating as revealed by particular estimates. But

whatever you do the solid is going to stay the same shape, so if your capacity is flawed

this will not be fairly judged by discrepancies between possible shapes of the solid and

shapes you could have given the plastic. Instead, flaws must be primarily marked by

discrepancies  between  shapes  you  can  give  the  plastic  and  those  of  the  underlying

contours. This is in the direction of safety, resembling mathematical knowledge.22

The solid shape corresponds to the necessary truths. (Which for all you know  might be

affected by greater powers than yours, something early modern philosophers worried

about.) The resulting shape of the plastic matter corresponds to the representation of

such a truth in your mind. (And for all you know the solid may have many features that

the sensitivity of the plastic misses.) And your awareness of this shape is what gives you

a clue about the shape that has formed it. But the comparison raises a question: how

does the effect of the solid shape on the plastic shape come into the metaphor? There is

a literal version of the question. How are we to describe the causal role of background

conditions, especially if we want to avoid possible situations where these conditions are

different. I discuss this below, but some preparation is needed first.

a problem about firmness of belief  

21  Another consequence of this fact is that the identification and individuation of the method used is less
problematic  than  it  is,  say,  for  beliefs  obtained  by  perception  or  memory.  Just  as  well,  then,  that
comparison  beliefs  obtained  with  whatever  means  the  person  finds  themselves  using  in  nearby
circumstances play a larger role in those cases.

22 Another example is prescientific knowledge of humanly short spans of time based on the regular counting
one can do in them. Here too there is a connection with Kant, identifying "inner sense" with one's 
knowledge of one's own thought and action (CPR A33/B49).  
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If  all  knowledge  is  basically  the  same  should  not  the  same  sort  of  evidence  apply

whatever the claim? Shouldn't we be content with inductive evidence for claims about

numbers? Or, going in the other direction, might we deny that Euclid knew what he

claimed  to,  since  his  stated  axioms  are  mathematically  inadequate?  The  attitude  to

knowledge described in the previous section suppports a response to these questions.

First consider some examples.23

(A1)   There  are  many  conjectures,  of  which  the  best  known  may  be  Goldbach's

conjecture and the Riemann hypothesis, asserting that all integers have some property,

where we can prove that they all do up to but not beyond some large number. We do not

have counterexamples for any n, but cannot prove or disprove the conjecture for the

infinitely many remaining cases. We routinely say that we do not know whether these

conjectures are true.24 But there is ample inductive evidence for them, at least as much

as we would need for many claims in the rest of science.

(A2)   There  are  also  many  conjectures  which  hold  in  many  cases,  without  known

counterexamples,  which  are  for  various  reasons  much  more  plausible  than  their

contraries, which although we are unable to prove or disprove them we are pretty sure

are provable if true. Possibly the best known of these is the P≠NP conjecture in computer

science.25 A conjecture like this might evoke as much confidence, and be as coherent

with established theories for which there is extensive hard-to-dispute evidence, as many

uncontroversial scientific claims. So why are these not known if true?

(B)   Sometimes we do not recognize a theorem for what it is, taking it as a law of nature

or  an  accidental  generalization.  A  19th-century  physicist  could  have  seen  abundant

evidence that conserved quantities were associated with symmetries in the Lagrangians

23 Kitcher (1980) discusses cases like this and arrives at different conclusions based, I think, on assuming a
fixed standard for knowledge rather than, as here, one that is sensitive to the particular modal properties
of the proposition in question, as is standard in various ways in most accounts of knowledge since that 
time. I fall into a similar trap in ch. 3 of Morton (2003).  

24 J.E. Littlewood(1962), eminent early 20th century mathematician, on the Riemann hypothesis: "I believe
this to be false. There is no evidence at all for it .... There is no imaginable reason why it should be true."

25 Not long ago the four colour theorem/problem and Fermat’s  conjecture  would have generated other
examples.  There are two loose connections with Gödel's theorem: that there can be no comprehensive
mechanical way of telling whether something is mathematically provable, and that inductive evidence of a
system’s consistency can coexist with fundamental obstacles to proving it.
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of the relevant systems and on that basis  have known that it  was true, while being

unaware of Noether's 1915 theorem showing this to be a mathematical  fact.  Various

propositions  for  which  there  is  empirical  evidence,  including  evolution  by  natural

selection, have been claimed to be mathematically provable, and, whether or not they

really are, the claim is intelligible. And, just as there is overwhelming inductive evidence

that  with  two  apples  and  three  oranges  you  have  five  fruit,  someone  could  have

accumulated enough evidence to accept that when you walk up a hill and then down it

again there is always a point which you reach at exactly the same time on both journeys,

without realizing that empirical evidence was not really necessary as it could have been

proven. 

(C)  Then there are claims that are at one time accepted as part of mathematics but are

later  thought  to  be truths  about  the physical  world.  In  ancient times arithmetic  and

geometry were considered to be very similar; truths in either were to be be established

by proof alone, as were many connections between them. Suppose that space actually is

Euclidian. Do we need proofs for its properties when we can verify them with multiple

observations?

(D)  A hard to classify case is that of the consistency of powerful set theories. We often

have considerable evidence that a set theory such as the standard ZFC is consistent,

from our having worked with it and encountering no contradictions, but we also know

that we will not be able to produce a proof of its consistency using resources that are no

less plausible than that set theory itself.26 So in a clear but easily misunderstood way the

consistency is unprovable. Again we have something that it is reasonable to believe and

which we expect to be true in a wide range of possible worlds. But some will balk at

saying that we know it.27

We make and react differently to claims of all these kinds depending on whether we think

we know them and whether we think the content is mathematical. We hesitate and hedge

26 Why set theory rather than arithmetic, also incompletely axiomatized? Because of the different position of
informal proof. It is somewhat unclear that we cannot know by informal mathematical means that, say, 
first order Peano arithmetic is consistent, while the further reaches of set theory are so unintuitive that 
we have to depend on carefully formalized proof.

27 I am not claiming to be one of them. The question of whether belief in very powerful systems of set 
theory, when they are consistent, is knowledge involves delicate issues about degrees of necessity. 
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and tread carefully  around claims about knowledge when we take the content to be

mathematical  but  lack  anything  with  the  solidity  of  a  proof  meeting  contemporary

standards. Why is this? 

An answer lies in the uniform-but-variable account just outlined. When we describe a

person’s conclusion as knowledge of some topic, we connect the description with other

instances of knowledge within a framework that takes account of what is possible for us,

what  we can hope to  achieve,  on  that  topic.  So when we characterize  the  topic  as

mathematical we suggest that it has features that trigger certain criteria. And of course

we might be wrong about this. More specifically, mathematical knowledge, as described

here, requires that the exceptions to perfect correlation concentrate on cases where a

belief obtained with the same method as the one in question is false (rather than cases

where a situation like the one that obtained is not accompanied by a matching belief).

Knowledge  is  always  knowledge,  but  it  is  a  human  thing  subject  to  our  realistic

aspirations. Importantly, the triggers for the fine-tuning of knowledge are independent of

what label we apply to a belief’s supposed .domain. They depend on the facts about how

one can get a reliably true belief about the entities and attributes in question. As a result,

we may think that one form of fine-tuning is appropriate while in fact another is.  

In  (A)  cases,  where  conjectures  about  numbers  are  settled  for  many instances,  the

method proposed, simple induction, will of course also produce false conclusions, and

many  of  these  will  be  much  less  necessary  than  the  actual  fact  would  be.  So  the

classification that would fit inductive generalizations will not fit the possibilities of the

case. With (B) cases, too, the claim and its support do not mesh in terms of necessity,

resulting in the same tension between the epistemic classification and its metaphysical

ground. 

(C) cases are in many ways the opposite. We learn — on empirical grounds — that parts

of the topic are less necessary than we had thought. The original methods continue to be

applicable (though other, more empirical, methods may be added to them). As long as

physical space is taken as Euclidean, establishing its properties by the old synthetic or

analytic methods remains an option. After all, if these methods continue to be reliable

sources of conclusions that combine well  with those we learn about in other ways it



18

would be foolish to spurn them. So to some extent the demotion is just from a category

of necessities that can be established only by mathematical methods to a category of

necessities that also allows more standard scientific evidence. What is happening could

be described as a redrawing of the boundaries of mathematical knowledge, in accordance

with a stratification of  necessity.  Facts  about  numbers and structures  of  number-like

entitles are put into a category where they would be true even if geometrical facts failed.

But  if geometry is still taken as true of the world, we have a thinking-based source of

conclusions which we can still take to give us truths of some degree of necessity. 

(D) cases are tricky. Our confidence that a set of axioms for set theory is consistent does

depend on properly mathematical practice. But it is based, in a generally inductive way,

on the fact that we have arrived at a large but finite set of results rather than by going

further by continuing from them. As a result for every such argument there is a parallel

very similar argument to the consistency of an inconsistent variant of the axioms. So

though mathematical in content the belief in the theory's consistency is knowledge, when

it is, in a way different from that of the theory’s consequences, when they are.

Mathematical  knowledge emerges as distinct from, but unified with, other kinds. The

label of mathematical does not play a role in getting to this conclusion. What is important

is that mathematical conclusions are based on characteristically mathematical activities

which give results of a characteristic necessity. So our ascriptions depend on what we

take these activities and the associated necessity to be. As long as they match they will

constitute  a  stable  concept  of  knowledge,  but  given  a  particular  time  and  topic

communicative convenience will force a particular combination into association with the

topic.  It  makes one wonder what future reallocations of method and modal category

there may be.  

doing math

What are the actions whose success or failure is a basis for knowledge in mathematics?

They  are  very  varied.  It  is  a  theme  of  recent  philosophy  of  mathematics  that

mathematical  activity  consists  of  a  lot  more  than  proving  theorems  from  axioms.28

28 Azzouni (2006), part II. 



19

Constructing examples, refining intuitions, seeing analogies between one structure and

another, and many other processes are central. Unless a particular agent has performed

suitable  actions  — which  ones  depending  on  the  person  and  the  conclusion  —  her

thinking may not take a form where its near variants lead to truths. As many writers

have pointed out,proof itself is a rather fluid business and is not in stark contrast with

intuition.29 The next step in a proof typically relies on assumptions which the practising

mathematician may not be able to state, and it  typically  requires some training and

aptitude  to  be  able  to  make  this  step  and  recognize  it  as  acceptable.30 (To  put  it

differently, automated theorem proving doesn’t cover the same ground, and its output is

often practically unintelligible.31) 

A particularly  telling aspect of  mathematical  practice is  construction.  There is  a long

history in geometry of producing or transforming figures in various specified ways with

various means, which are used to establish associated results. Plane constructions using

procedures identified with ruler and compass alone, which have sophisticated algebraic

connections,  are  typical.  What  one  can  make  and  what  one  can  prove  are  closely

connected here.

Some of these practices are social.  They can be explicit interactions: mathematicians

suggest problems to others, and criticize, refine, and reformulate one another's work.

One person may have a fertile imagination and suggest possibilities together with rough

and often unworkable  ideas about how to prove them, and then one or  more other

people can massage them into forms that will withstand the scrutiny of yet more people.

It may be that only in the context of this network are the surviving actual and idea-

sketches of the first person typically true. The available vocabulary and notation may

make a fundamental difference to how one person can fix in their mind what might be

worth making more precise or finding a proof for and in consulting with others for this. It

may be that without some detail of procedure or notation it would have been impossible

29 For example Azzouni (2004), Larvor (2012).
30 In this connection note the suggestion, in van der Waerden (1954, chapter VIII) that ancient geometry

required a learned use of diagrams which when lost prevented the continuation of the tradition. Netz
(1999, especially chapter 1) presents a congruent, but more careful, position. See also Azzouni (2004).

31 There are formally correct machine proofs that humans cannot follow. But a difference between computer
proof and computer chess is that recognising a checkmate is trivial while seeing that a conclusion in 
mathematics-as-practiced is correct can be far from it.
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for some individual or for individuals in some context to keep a safe distance between

their actual production and possible false output. One obvious aspect here is the process

of  successive  reformulation  by  which  conjectures  and  strategies  for  proving  them

generate  reformulations  and  more  solid  proofs  until  there  is  eventually  a  close  fit

between  what  is  claimed  and  what  is  demonstrated.  A  capacity  to  come  up  with

suggestions that are amenable to proof or counterexample is needed, as are capacities of

finding the proofs and of fitting revised proofs to revised suggestions. There are no basic

differences in  this  respect  between knowledge in  mathematics  and in  other  kinds of

knowledge.32 

Different  thinkers  working  in  different  traditions  in  different  intellectual/social

surroundings need different ways of making their thinking reliable.  We should not be

quick to deny that Euclid knew that the interior angles triangle sum to 180°, although his

axioms were deficient and he mistakenly thought they applied to the space of familiar

experience.  We should  not  be quick  to  deny that  Leibniz  knew the  product  rule  for

derivatives, although he had nothing like what we would consider a proof. We should not

be quick to deny that Cantor knew that there are more real  numbers than integers,

although he was reasoning informally (but rigorously) from principles that we can now

see to be contradictory. We should not be quick to deny that Ramunajan knew that his

infinite series converged to ϖ, although he would have disdained a conventional proof.

There are many many examples.33 In all of these cases what we would now call proof is

lacking. These mathematicians might well have balked at giving more tedious proofs, and

in any case they would not have known the rules as we now give them. But they and

their contemporaries, partly because of their ways of interacting, knew a lot.

32 There is an obvious link here with the neglected topic of mathematical knowledge by testimony. But 
conjectures, suggestions, criticisms, and analogies are also transmitted. These interact in hard-to-
understand ways.  

33 One  class  of  historically  important  cases  concern  results  that  need  to  be  qualified  with  conditions
distinguishing between kinds of convergence and kinds of continuity, that were not in the mathematical
atmosphere until the the nineteenth century, in part because stating the conditions requires meticulous
use of quantifiers that would have been alien until then. (Without which consistent axioms for set theory
would be impossible: a hidden methodological continuity.) The work of mathematicians working in the
days before careful foundations of analysis and before formal measure theory needed some retrospective
tidying up and some results needed to be restated with qualifications, but the overwhelming majority was
uncontroversial knowledge, for all that. A nice discussion of these issues, showing the relevance of the
formal issues to applications, is in Bressoud (2007). See also Gray (2015). 
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causation revisited

The account has been causal, in that it has appealed to causal processes in the minds of

individual  thinkers  and  social  cognitive  interactions  between  thinkers,  leading  to

knowledge  of  facts  that  are  beyond  causality.  That  does  not  make  direct  causal

connections between mathematical facts and mathematical belief. But there are indirect

connections,  which  are  in  a  definite  way  causal.  These  indirect  connections  can  be

summed up by saying that mathematical facts shape or constrain processes that produce

mathematical beliefs; it is because these processes respect the relevant facts that they

result in corresponding true beliefs. This is still somewhat metaphorical, but it can be

sharpened.

David Lewis taught us that conditionals of the form “if cause hadn’t happened then effect

wouldn’t have followed” are particularly relevant to issues of causation.34 But these are

directed at individual physical events occurring at particular times. And “if 7+4 were not

11” is a pretty indigestible antecedent.  Yet necessary general  truths have contingent

particular consequences, often closely linked to them. Geometrical examples are typical

and abundant. If we had not travelled half the circumference of the earth on each leg of

the trip we would not have traversed a triangle with three 90° angles. Everyday oranges

and apples arithmetic is also full of them. If there had not been five dogs as well as the

seven cats on the list of veterinary appointments then the list would not have had twelve

animals,  given  that  the  vet  was  only  seeing  dogs  and  cats  that  day.  But  it  is  not

necessary that there were five dogs and seven cats. Background conditions are generally

like  this.  Universal  gravitation is  causally  relevant  to  the  orbit  of  a planet,  although

conditionals  beginning  "if  there  were  no gravitational  attraction  between  all  massive

bodies then …” are hard to handle. We think instead in terms of conditionals saying such

things as that if the relative masses, positions, and velocities of a particular planet and

its star had not been as they were then the orbit would not have been as it was. The

causal relevance of general facts, many of them laws of nature, is no more puzzling than

the rest of causation, but it is different from the causal relation between events. The

relevance is focused: a law can give the reason why some events occur but not others.35

34 Lewis (1973), (2004). Lewis begins with this contrapositive conditional and extends it in various ways, 
different at different stages of his thinking on the topic.

35 I am using the vocabulary of laws for convenience, but not much hangs on what form we take general 
natural necessities to have.
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Electromagnetic theory, though in the same nomological category as gravitation, does

not generate counterfactuals with the same relevance to planetary orbits. And in general

causal necessities have contingent consequences which allow them to shape individual

events. 

The word "causal" can be misleading here. It is more general than "causes", taken to

denote a relation between token events and narrow classes of them. For it also applies to

the relation between laws of nature and the events that conform to them. In fact, there

can be laws that are thoroughly causal but do not give causes36. I shall describe theories

as causal when they are true or false because of the physical workings of the world, and

keep  "cause"  and  "causes"  for  the  relation  between  events.  Causal  theories  include

accounts of background conditions for event causation, that is, as I shall use the term,

facts about laws of nature and similar determinants of what happens which do not satisfy

the Lewisian "if not then not" formula..

Mathematical facts are background conditions for the causal relations between the stages

of  a  person's  thinking,  and  are  invoked  in  causal  theories  of  them.  Only  some

consequences of some particular mathematical facts will  be relevant to establishing a

particular contingent counterfactual. Even taking mathematical propositions or facts as

indistinguishable from one another, all holding in all possible worlds, most of calculus,

geometry,  and  topology  is  relevant  to  thinking  about  the  vet's  appointments  only

inasmuch as they entail  basic  arithmetic.  On the other hand basic arithmetic  applies

directly. (Other parts of mathematics have to reach through arithmetic to connect with

everyday ‘how many’ thinking.37) And similarly in other cases: only instances of some

specific mathematical principles are relevant to any particular causal application. When

the topic is the epistemology of mathematics, the important question is how the thinking

that leads to a particular conclusion is shaped by the particular fact that the conclusion

corresponds to.  

36 A suggestion of Mark Wilson’s (Wilson 2017) is relevant here. Wilson points out that physical processes
which  fit  the  image  of  causes  prompting  their  effects  in  time  tend  to  be  expressed  by  hyperbolic
differential equations, while other equally fundamental natural principles are given by elliptic differential
equations. So, crudely, if "causal" refers to the workings of nature in general, then the transition from
cause to effect is only a very particular part of the operation of the world. 

37 "Arithmetic" here means any way of doing arithmetic operations, not specifically axiomatic system and 
including arithmetic embedded in first-order logic with identity.
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This  is  easy  to  see  in  some  particular  cases.  In  the  mind  of  someone  doing  basic

arithmetic with a mental abacus, images of unit tokens are moved around to form sums

and products. This is like dogs and cats at the vets office in the example above, where

possible arrangements are constrained by directly corresponding arithmetical facts. And

extending this to the kind of mental rearrangement that is implicit in procedures like

those that little Gauss must have gone through to find a shortcut for seeing that the sum

of  the  integers  from  1  to  100  must  be  half  of  100×101  would  be  very  natural.38

Something similar will be true of any broadly analog thinking, such as simple Euclidean

geometry.39 There is an obvious connection with some kinds of mathematical intuition. 

There are two general connections with mathematical knowledge. The first is sensitivity

to counterexamples. Someone notices that the digits of the first several multiples of nine

when expressed in the usual base ten notation add up to nine. She wonders if this is

always true, and tries first to check for counterexamples. The digits of 9×10 sum to a

number whose digits sum to 9, leading to the conjecture that repeated such summations

will eventually lead to 9. After checking a number of these she tries to prove that it is

true in general. A little algebra convinces her that it is. If all has gone well she then

knows that it is. But her conclusion would not be knowledge if amid her consideration of

possible counterexamples there was an easily accessed case that she would, or even

easily could have, mistakenly taken to be a counterexample. Or if she would have been

unmoved by counterexamples to a very similar but invalid generalization. And part of the

reason why she will not come across counterexamples if she is on the way to knowing

her conclusion is that in fact the sum of sums is always 9.40      

Sometimes the way that the truth of a conclusion shapes the reasoning leading to it is

transparent. An example is a proof of 2+ 1 = 3 in Peano arithmetic. One line in a simple

38 From a famous story that when Gauss was a schoolchild his teacher, hoping for a quiet hour, set the class
to add the integers from 1 to 100, not anticipating that within minutes the boy would have realized that if
you put the sequence beside its reverse and then add corresponding terms you get the same subtotal
each time, so that you need only to multiply the number of terms by this constant subtotal and then
divide by two. 

39 Along the walls of my classroom in the first school I attended there were pictures of playing card faces in
the standard patterns, and even now, many decades later, when uncertain about sums and differences,
instead of remembered tables I put images of the card faces together and count the markings.

40 This is not to deny that many other mathematical facts would also play a role in explaining how a person 
did or did not think and how they reacted to a particular example.
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proof might run "SS0+S0=SSS0", followed by definitions of the three numerals and of

addition. But note how there are two occurrences of "S" and then one more occurrence

on the left of the equals sign and three on the right. Had we been proving a different

identity there would have been different numbers of  "S"s at this stage, and had the

person producing the proof have mistakenly written down the wrong number of "S"s the

result would not have been a correct proof. (Proofs in simple arithmetic and logic can

seem circular for this reason. Someone who did not understand the conclusion would find

it hard to follow the reasoning. It is not in fact the reasoning that is circular, but the

grounds for its success.) When a proof can be conveyed by a diagram, without words,

there is usually a similar clear connection between the mathematics itself and making or

understanding a proof of it.41

Most proofs are not as autonomous as this. They build on other results and on explicit

axioms.  Proofs  of  any sophistication build  on other  proofs  and on acquaintance with

suitable  axioms.  Knowledge  transmitted  from  mathematician  to  mathematician  will

inevitably play a large role, with the conclusion developing at each stage. (Like a wild

rumour,  except  for  the  little  matter  of  truth.)  The  fact  still  applies.  The  result  is  a

necessary condition for the success of its its proof.42 This is best put in terms of models.

A previous result on which a new proof is based will establish that its conclusion holds in

a certain model, and a correct proof will preserve this.43 If the conclusion of a proof does

not hold in some model satisfying all its starting points then something has gone wrong

with the reasoning. So its holding in the intended model is required for the reasoning to

be good. And this fact about the abstract structures is a necessary condition for the

connection between their representations. If the structures were not so related then the

reasoning would not have been possible, on the assumption that it is causally guided in

such a way that it preserves truth in a model. Or, to put it differently, when the structural

facts do not hold the reasoning can only get to its destination when it is flawed.

41 Nelson (1993) and successor volumes are a rich and varied source of purely visual proofs.
42 This raises a delicate parallel to knowledge of other topics. Suppose that someone makes a correct proof 

of a true result based on a previous true result itself resting on a faulty proof. When is this knowledge?
43 Sometimes the intended domain will need to be expanded to accommodate a name associated with a 

syntactically consistent description. For example one might build a nonstandard model for arithmetic 
around the set of descriptions "number greater than n" for all standard numerals n. But then, everything 
else going well, the proof will establish something about the nonstandard model.
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There is another connection with real life non-mechanical proofs. Many steps of them

make  more  implicit  assumptions  than  are  stated,  or  even  that  could  be  explicitly

formulated  by  their  authors  (Larvor  2012,  Azzouni  2013).  To  that  extent  training  or

intuition — a feel for the material — is essential. And these transitions are possible only

because of the facts that they unveil.

causal theories of truth and reference

I have been using "true" as an undefined primitive. That's alright; you cannot answer

every follow-up question. But the capacity to refer to mathematical objects may seem

just as problematic as the capacity to have knowledge of them. So there is a point to

explaining, briefly, why the attitude to causation I have been outlining, centred on the

role of background facts in laws describing the origins of human actions, can be turned

with remarkably few changes into a version of a causal theory of truth.

The  first  target  has  to  be  reference.  Once  the  initial  links  between  names,

demonstratives,  and predicates  and their  referents are determined,  reference can be

passed on from one use and one speaker to another, and truth conditions can follow the

same recursive patterns, given a somewhat arbitrary choice of  logical  form, with the

same strategies and meeting the same problems for sentences about any topic.  The

problem is  about  establishing  reference  in  the  first  place,  rather  than  truth.  Initial

reference to a physical object links its physical characteristics to the act of naming. I

point at a baby and say "this child will be called Maryam", and the infant in line with my

ostention gets the name for the moment and keeps it if others take it up and pass it

along. If another infant had been there and had caused my attention and that of the

audience to be directed towards it then the name would have latched on to her or him

instead. The puzzle is how one can name abstract objects in a mathematical context in a

parallel way.

A person's attention is directed to a physical object — they have it in mind — when the

fact that the object has some relation to the person, often in terms of their relative

locations,  is  a  cause  of  the  person’s  coming  have  a  capacity  to  attribute  properties
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accurately to it.44 By naming the object and drawing another person's attention to it and

to the name the connection can be passed on to another person, who can pass it on to

others. The initial connection can use a description that is in fact false, as long as it leads

to  a  capacity  for  truthful  ascription,  which  can persist  without  the  description,  as in

Kripke's Gödel example.  

The situation with names in mathematics is parallel in a way that should by now be

familiar.45 Realizing that when the larger of two real numbers has the same ratio to the

smaller as their sum has to the larger this ratio is the same whatever the numbers,

someone names the ratio "φ”. The relation between namer and named is that the person

has  identified  the  constant.  Then  others  can  use  it  as  a  name  for  its  value

(1.6180339887498948420 …),  without  necessarily  knowing  that  it  has  this  originally

defining characteristic. (A subsequent user of "φ” may have learned it as the limit of the

ratio of terms of a Fibonacci sequence, for example.) It is even possible for the initial

description to be wrong, as would happen if someone introduced ϖ as 22/7 thinking that

this was the ratio of the circumference and diameter of a circle, or if someone introduced

“2” as the unique square root of 2, not realizing that -2 also qualifies. 

The characteristics of φ are causally related to the person who introduces the name "φ" .

Suppose that the realization that there is such a constant comes from some particular

lengths, perhaps in art or design. If the objects with those lengths had been different

sizes then they would not have had a constant ratio, and whatever ratios they had would

not be φ. When someone calculates the ratio of two lengths that do qualify the answer

they get if they make no mistakes is identical, up to some number of decimals, with φ,

and the reason is the mathematical fact that there is such a constant and its value is φ .

And so on. The facts about φ are conditioning the causal possibilities of thinking about it.

Since transmission need not preserve any accurate characterization that facilitated the

initial naming, a name can be used to say false things, even very false things, about its

44 This way of putting it has a loose resemblance to Jane Heal's concept of co-cognition in understanding 
another person's thinking (Heal 1998). The resemblance may go deep in that shared attention is 
sometimes associated with language learning.

45 The picture is complicated by the fact that in mathematical practice one frequently introduces a symbol 
which is used several times and then not again with the same denotation. (We sometimes improvise 
something similar in everyday language.) I am ignoring this.
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referent,  here as  in  the case  of  reference to physical  objects.  Just  as  someone can

intelligbly say of whales that they are  fish, they can say of  φ that it is rational. The

ascription is perfectly intelligible, but false.46

Such  causal  accounts  of  proper  mathematical  names  can  be  easily  extended  to

predicates. (There are relatively few proper names in mathematics,  mostly names of

particular  constants  and  functions.47 Most  of  the  work  is  done  by  descriptions  of

functions.) The pattern is that a predicate or function is introduced in connection with a

relationship underlying a pattern, and then continues to be used for what accounts for

this pattern even when the description or functional role that was originally part of the

introduction turns out to be inadequate. Exponentiation gives an elementary example. mn

originally  meant  the  n-termed  product  m(1)  x...x  m(n),  and  although  this  has  to  be

abandoned when n is not a positive integer, as with eϖi, the notation remains because it is

convenient and because there is a unity to the mathematical origins of the numerical

patterns that result. The general phenomenon, often resulting in “analytic continuation”,

is  the  extension  of  well-behaved  functions  to  new  domains,  sometimes  by  using  a

convergent series as a bridge. This can seem at once like redefinition and like uncovering

what a function really was all along.48

Conclusion: This has not been an argument for mathematical Platonism. Or against it.

The  Plato/Benacerraf  problem may  indeed  be  daunting;  there  may  still  might  be  a

tremendous challenge in reconciling a plausible ontology for mathematics, what in the

world different parts of mathematics are about, with a plausible account of the grounds

for mathematical beliefs, how we can know when claims about these specific objects are

true. Or there may not be. There is no inevitable tension between extending accounts of

truth-in-general  to  mathematical  language  and  extending  accounts  of  knowledge-in-

general to mathematical results and discoveries. Deep complications enter, if they do,

46 The greatest importance of this separation is to make it clear how one can say extremely false things 
about something while still talking about it The same could be said about names in fiction. And in fact the
account would fit comfortably with the interpretation of fictional names in Kripke (2011) as names of 
abstract objects. 

47 “But there are infinitely many names of integers." No:they are always and inevitably descriptions 
recursively generated from a few primitives.

48 Generalizing from the discrete to the continuous is a feature in many domains. Startling cases are 
geometries of fractional dimension and fractional derivatives and integrals.
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when we go further and combine accounts of specifically mathematical  ontology with

accounts of specifically mathematical method. But whatever the size of this challenge, it

does  not  make  a  problem  reckoning  mathematical  lore  as  of  a  piece  with  other

knowledge, in part because its truth is of a piece with other truth. The causal elements of

both can even be transferred, if they are described in enough generality. 

"Is of a piece with", "enough generality": the resulting theories are neutral  on many

topics that philosophers care about. That is an advantage as well as a liability. It makes

us ask what purposes we want an account of a topic to serve, and emphasizes there is

typically no such thing as the theory of X. (Consider, for example, thermodynamics and

the molecular theory of heat, which ought to combine smoothly but ought also to be

separable.)  The  bearers  of  truth  and  of  knowledge,  for  my  purposes  here,  have

syntactical structure only as  a device to get the right truth values.49 Their structure may

have little relation to that of the facts that verify or falsify them; for them the world is all

that is the case.  
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