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ordered and unordered quantifiers 

[DRAFT – 12 April 2015]

introduction: quantifiers 

Many,  perhaps  most,  quantified  sentences,  contain  more  than  one  quantifier,

especially if we take account of implicit quantification in constructions that are not

expressed as determiners, such as tenses and adverbs of quantification. ("Usually,

when a cat has chased most of the mice, it then gets bored and looks for a bird or

two" - five quantifiers.) And iterated quantifiers are at the heart of our abilities to

express complex thoughts. Yet the order of quantifiers is not apparent from the

surface  syntax  of  many sentences,  and  it  is  not  easy  to  extract  it  from more

sophisticated considerations [FTN ]. The purpose of this paper is to describe a way

to  think  of  quantifiers  as  fundamentally  unordered,  in  a  way  that  allows  the

information usually given by order, by specifying which quantifier is in the scope of

which, to be extracted from further considerations. This can result in a traditional

linear  quantifier  ordering,  or  as  the  more  general  structures  of  branching

quantifiers,  or  as  quantifiers  with  no  ordering  at  all.  One  consequence  of  this

approach is that it reveals more ordering possibilities with 'generalized quantifiers',

quantifiers besides those definable in terms of the standard universal or existential

quantifiers.

In the remainder of this section I sketch the basic aspects of the approach, leaving 

details and applications to later sections. 

Restrictions on quantifiers are central to the account I shall present. A restriction

states what smaller part of the whole domain of discourse figures in a quantifier's

contribution to a sentence's truth value. The restrictions of universal and existential

quantifiers are often absorbed into their main content. Thus "all cats hate getting

wet" is equivalent to "if anything is a cat it hates getting wet". But philosophical

favorites  though  they  may  be,  the  universal  and  existential  quantifiers  are
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exceptions  in  this  regard.  "Most  cats  hate  getting  wet"  is  not  equivalent  to  "if

anything is a cat then it hates getting wet. (Suppose there are seven individuals in

the domain, of which three are cats but only one hates getting wet. Then "most

cats hate getting wet" is false, but "most individuals are such that if they are cats

then they hate getting wet" is true, at least when the conditional is material, since

most individuals are not cats.) In [an] appendix I give counterexamples to a series

of facts about ALL that do not hold for MOST. (And fail for many other quantifiers:

MOST  is  a  convenient  foil  for  ALL  in  part  because  of  the  simplicity  of  the

counterexamples.) And in later sections of the paper I make a number of remarks

to lessen our confidence that restrictions can be absorbed into the main content

even for ALL and SOME. 

[FTN: A first reaction might be that the problem is an artifact of taking the conditional to be material. But this is 
what the material conditional is best for: if you were designing a connective to express a restriction to a smaller 
domain it is what you would come up with. All the same, as a matter of English idiom we do say things such as 
"mostly, if it's a cat it doesn't like the rain, or "if it's a typical cat, it chases mice". I suspect these are adaptations of 
expressions that are literally true for other quantifiers, such as all ]

The general idea for deriving ordered quantifiers from an unordered basis can be

given with a standard example. Given a two place relation, such as "chases" we

usually specify how many chase and how many each chaser chases by inserting

"some" and "all", in the familiar way derided by logic teachers, in the argument

places  of  the  relation,  as  in  "everyone  chases  someone".  This  sentence  is

notoriously ambiguous: it specifies that every chaser has a chasee, but not how

many chasees there are. If we do not specify this then we know only that there is a

chasee for  each chaser.  ("Everyone chases",  we say,  meaning everyone chases

someone or other, and this default reading makes sense since you cannot be a

chaser without chasing something.) But we can also specify that one chasee is all

that is needed to make the assertion true. Then we know that there is an individual

chased by everyone. So the difference is between "each individual chases one or

more individuals" and "each individual chases an individual that is the same one in

all cases". The first of these is of the "for all x there is a y" form, and the second of

the reversed "there is a y such that for all x".
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When the origin of quantifier ordering is seen this way, the standard universal and

existential quantifiers look even more exceptional. For we can just as easily specify

that the chasee role is divided between seven or a hundred dogs, as in "each cat

chases one of  seven dogs"("there are seven dogs,  and each cat  chases one of

them".) We give such qualifications when we need to be very clear about what we

mean,  as  when  we  want  to  reverse  the  most  likely  interpretations  of  the

syntactically parallel "someone ate all the sandwiches" and "someone dies every

minute". We can underline the less likely interpretation of the first by saying "some

person or persons ate all the sandwiches", where the possible plurality makes it

clear  that  no single  eater  is  being postulated.  We can underline  the  extremely

unlikely  interpretation  of  the  second  by  saying  "some single  person  dies  every

minute".

Ftn: refs, and suggestion that when people hear the three Lincoln sentences they 

register the contrast, but not which of the first two is which. 

The device can be applied to a range of quantifiers. For example in "most (of the)

cats chase most (of the) dogs", taken so that neither quantifier has scope over the

other – so the information is just "there is chasing: most of the cats are in the

chasing role and most of the dogs are in the chasee role” – we can give "most cats"

wider scope by requiring in addition that there be a set C with a majority of the cats

in it and a set D with a majority of dogs in it, such that for every member of C the

set of dogs that it chases be D, and that there be only n>0 such majority sets of

cats. If n=1 there are examples in a three-element domain, where "Most.x Most.y

Rxy"  is  true  under  this  interpretation  but  "Most.y  Most.x  Rxy"  is  false,  and

moreover "Most.x Most.y Rxy" understood as "Most x are such that they have R to

a majority of y" is false.  (R= {(1,1), (1,2 ),(2,1), (2,3) .) With other quantifiers

similar facts hold. For example there are examples in a four-element domain where

"2x.3y Rxy" is false with n=1, although "for 2 individuals x it is the case that each

has R to 3 individuals" is true. ( R = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,4)} .) 

These examples  illustrate  two basic  points.  First,  there  are  two distinct  though

related functions of quantifiers. One is to specify how many individuals satisfy a
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monadic open sentence or an argument place of a relation. A standard position for

such a quantifier in logical notation is as the first of a string of linearly ordered

quantifiers, where only one argument place remains unfilled. Call this the absolute

function of quantifiers. It contrasts with the relative function, in which a quantifier

specifies  how many individuals  are  related  in  a  specified  way  to an  individual,

typically  one  satisfying  a  condition  stated  in  terms  of  another  quantifier.  This

pattern  of  relative  quantifiers  within  the  scopes  of  absolute  quantifiers  arises

naturally  from the  Frege-Tarski  tradition,  on  which  quantifiers  are  successively

applied to open sentences of decreasing adicity. It is this decreasing adicity feature

which is responsible for many of the counterintuitive properties of quantifiers such

as "most" when conceived in this way, as detailed in [the] appendix.  

[FTN: the universal quantifier is unusual in that it is the same in both absolute and 

relative form: when members of a subset of the domain have a relation to 

everything, then the number of individuals occupying that place of the relation is all

of the domain.] 

The second basic point is that there is information about the structure of situations

or models making a sentence true that is not given either by quantifiers in their

absolute or their relative function alone. For example "most cats chase most dogs",

taken as requiring that there be one majority set of cats all of whom are chasers, is

not  equivalent  to  "most  cats  are  such  that  they  chase  most  dogs".  In  this

connection note also that with a sentence such as "six cats chase five dogs" we do

not get the Frege-Tarski interpretation "six cats are such that each of them chases

five dogs" just by imposing a cardinality condition on the wider scope quantifier.

Requiring that there are six cats that chase does not force it to be equivalent to "six

cats are such that they each chase five dogs", since this latter can also be true

when there are five dogs, each of which is chased by one of six cats.

The  Frege-Tarski  tradition  can  be  contrasted  with  the  Mostowski-Lindstrom

tradition, in which quantifiers are taken directly as properties of sets of n-tuples,

typically those which are closed under isomorphism of models, which may or may

not be describable in terms of an iteration of operations on single argument places.
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An example of a quantifier that is easily conceived of in M-L terms but hard to

understand in F-T terms is Qxy defined by "Qxy Rxy is true when there is no 1-1

correspondence between the pairs (x,y) for which Rxy and the pairs (x,y) for which

Ryx". Quantifiers are easier to define, and definitions of truth and satisfaction are

easier to give, on the F-T approach, but the M-L approach gives a greater range of

possible  quantifiers.  The  two  approaches  are  related  to  the  two  functions  of

quantifiers in that the F-T approach makes the relative function inevitable while on

the M-L approach there are quantifiers which have no relative aspect, for example

the quantifier Qxy defined by "Qxy Rxy is true when there are infinitely many pairs

(x,y)  for  which Rxy."  So while  the F-T "such that"  interpretation  is  a  perfectly

intelligible way to understand some quantifier combinations it is not the only way.

Independent specification of how many are required in each argument place, and

how many of the individuals filling one place of a relation have the relation to how

many filling another, will often be needed.  

We are so accustomed to the F-T approach that we tend to ignore the fact that it

fails to state, or leaves to context, information that can be crucial to thought and

communication.  "Some cats  chase  some dogs"  does not  specify  how many are

chasing or being chased or how many ways the dog that a given cat chases may be

chosen. And if we do specify these facts for, for example, "Six cats are chasing five

dogs", then a standard meaning, and possibly the default one, is that there are six

chasing cats and five chased dogs, while each of the six chases some contextually

specified number of the five and each of the five is chased by some contextually

specified number of the six. This can happen with "all" and "some" too: sometimes

when we say, for example, "all the cats are chasing all the dogs" we mean that all

the cats are chasing and all the dogs being chased, leaving it open or to be settled

by context how many dogs each cat chases and how many cats each dog is chased

by.  Neither  "all"  is  then  in  the  scope  of  the  other,  and  the  quantifiers  are

unordered. So one possibility for unordered quantifiers is that they simply do not

specify how many individuals each individual satisfying their argument places (the

quantifiers  ‘witnesses’)  has  the  relation  to,  any  more  than  ordered  quantifiers

specify how many individuals satisfy the argument place bound by the inner-scope
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quantifiers. Some information is left out either way. In the rest of this paper I will

develop these ideas in more detail. 

[FTN: the 'double absolute' reading of a two quantifier sentence is encouraged in 

English by using progressive tenses ('are/were/will be chasing'). The reason is that 

these tenses suggest that the events took place over an interval, during which 

there is time for e.g. each of several cats to chase each of several dogs 

successively. So too with references to longer spans of time ("last month".) One 

would expect similar consequences with e.g imperfect tenses in Romance 

languages.] 

FTN? where?  When Q1 and Q2 are "none" or "exactly one" then the range of 

interpretations/readings is [drastically] reduced, to the two ordered interpretations 

"Q1x are such that for Q2y Rxy" and "Q2y are such that for Q1x Rxy". The reason for 

"none" is that if no As have R to even one B then none have R to any greater 

number. The reason for "exactly one" is that if a is the A that has R to some Bs, 

then there is a determinate number of B that a has R to, so that greater numbers 

suggest false claims. ("Exactly one cat is chasing dogs" does bear a variety of 

interpretations, though. Perhaps that cat chases all the dogs, perhaps even just one

of them, most likely a few of them.) This fact is significant in that it shows one way 

in which an ordering can be required by the nature of the quantifiers, beginning 

from a form that is not intrinsically ordered. It should make us want arguments 

rather than assuming that ordered and unordered quantifier prefixes must have 

[fundamentally different origins.] This is relevant to a widely accepted claim of 

Barwise's discussed in section ///.

restrictions 

In the next section I apply facts about restrictions to the ordering of quantifiers. In

stating these facts, I use standard ideas about scope, usually applied to a sentence

built around a binary relation. I shall write 

{Q1x, Q2y} Rxy
  Ax, Ay
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for the application of quantifiers Q1 and Q2y to R, where Q1 is restricted to A and Q2

to B. Ax and By are the restrictions and Rxy is the scope clause. I use the brackets

{} to indicate that the quantifiers are unordered, so there is no significance to the

order in which they are written. I shall often name quantifiers with capital letters –

ALL, SOME, MOST etc. – to block the associations tied to standard logical symbols. 

FTN  Type (1,1) rather than type (1), in the terminology of Peters and Westerstahl. (The 

terminology comes from Lindstrom.) There are also more complex types.

The restriction for "Most" cannot be absorbed into the scope clause as a conditional

or a conjunction, as already mentioned. So it is in relational expressions too: "Most

cats chase all dogs" needs the proportion of the cats that chase all the dogs to be

compared to the number of cats, not the number of cats-and-dogs or the domain

generally. (The same is true of e.g. "Most cats chase a few of the dogs", but these

sentences  need  to  be  handled  wth  care.)  The  same  is  true  of  just  about  all

quantifiers which express the proportion of individuals that have some attribute. At

least a third, nearly all, comparatively few, many, and others. (Some, such as [a]

few or too many indicate proportionality in some contexts and not in others.) All is

again on the standard treatment an exception, since it states a proportion, 100%,

while allowing “all A are B” to be expressed in terms of a condition on the larger

domain alone. But in linguistics, ALL is taken to need a restriction too. If ALL is a

typical quantifier and occurs in the syntactical contexts where other quantifiers are

found, which the standard semantics will refer to, is dyadic, then it is best treated

as  two-place  (restriction  plus  scope  clause)  also.  There  is  also  a  semantical

argument for taking all as dyadic, of a kind more familiar to philosophers. We want

to have truth conditions for sentences that combine ALL with quantifiers such as

MOST, and the combination can force ALL to have a restriction separate from its

scope clause. The clearest examples are where the quantifiers share a restriction.

Consider for example "Most lovers, whoever it is they love, later quarrel with them",

taken so that “loves” is the common restriction to the MOST and ALL (“whoever”)

quantifiers. The form is then

MOST x ALL y Quarrel xy
   Love.xy

Taking this in F-T style, it is true when taking most first members of a pair such that
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x loves y it is the case that whatever the second member of the pair, the first and 

second members later quarrel. This is equivalent to neither of the following

MOST x ALL y (if Loves xy then Quarrel xy)   

(Suppose in a large domain there are few lovers.)  nor

ALL y MOST x Quarrel xy   
Love.xy

(Suppose the domain is of three people: a loves a, b, c; b loves a, b, c; c loves no 

one. A pair quarrel iff they love. Remember MOST ALL is not equivalent to ALL 

MOST.)

There are also “cross scope” constructions in which a quantifier in the restriction of

a quantifier binds a variable outside it. It is clear that the restriction of a quantifier

can itself contain a quantifier, as in "All cats that chase most dogs are tough" or

"Most cats that chase all dogs are ferocious". (The second in particular would not

have the truth conditions it does if the restriction were to cats rather than to cats

that chase all dogs.) There are sentences in which the quantifier syntactically within

the restriction binds a variable occurring outside it. An example is "All cats that

chase most dogs fear them". It is part of the specification of the individuals all of

which fear most of the dogs they chase. I am taking this sentence so that the cats

fear the very dogs they chase, not an equivalent proportion of them. One way of

structuring the sentence preserving the scope relations, that MOST is part of the

restriction of ALL is as 

ALL x Fear xy
Cat.x, MOST y Chase.xy

Dog y

[FTN  We cannot represent this sentence as 

ALL x MOST y (MOST z Fear xz) 
Cat.x, Dog.y, Dog.z, Chase.xy

Duplicating the MOST to avoid quantification past the restriction boundary, for that 

fails to specify that the chased cats are the feared cats.]

The analog of this case with two ALLs is interesting. Representing “All cats that 

chase all dogs fear them” as 
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ALL x Fear xy
Cat.x, ALL y Chase.xy

Dog y

and then applying the standard algorithm for absorbing the restriction into the 

scope clause, we get 

x ((Cat.x &.y (Dog y..Chase.xy)) ..Fear xy)

But this is not well-formed. We can fix this by putting the sentence in prenex

form, as 

x y. ((Cat.x &. (Dog y..Chase.xy)) ..Fear xy)

But this is not a mechanical application of the prenexing rules, which apply only to 

well-formed formulas. And there is room for doubt whether it captures the meaning

of the English sentence. I leave this as a doubt about the standard line on 

restrictions of universal and existential quantifiers. It will return in another form in 

[the next] section.

We  also  can  have  quantifiers  binding  variables  within  the  restrictions  of  other

quantifiers ("most people who for a moment love everyone fear them at the same

time"), and quantifiers in multiple restrictions binding variables within one another

("All cats that chase them fear most dogs that growl at most of these cats.") This is

an  interesting  and  puzzling  phenomenon,  and  will  be  important  in  the  [next]

section.  A simple  case  is  "all  cats  care  for  most  of  their  kittens".  The obvious

formalization is

ALL.x MOST.y Carefor.xy
Cat.x, Kitten.xy

But this presents a puzzle. For each cat x there is a set of x's kittens, and the

sentence asserts that most of  these kittens are cared for.  This  means that the

quantifier MOST does not have a single restriction but a set of them, one for each

cat. I take it to assert that for each cat x there is a set Y containing a majority of

the kittens of x, and that x cares for every member y of this set. In a way, then the

MOST is not a single quantifier with a single restriction, but a series of quantifiers

with generally separate restrictions. An alternative idiom that brings out this side of

the case is "All cats care for the majority of their kittens", which allows for different

majorities for different cats. There are so many cases of this phenomenon – one is
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essential to the next section – that I do not think we can avoid accepting it as a

feature of quantification in the wild. 

Though I will  not use the fact in what follows, it is worth noting that apparent

violations of first order logic can result from a quantifier binding a variable in a

restriction. For the extent of the restriction on of a quantifier Q' can depend on the

value of a variable x bound by a quantifier Q in whose scope Q' lies. That is, we can

have sentences

Qx Q'y Sxy
Ax, Rxy

An example: in the biography of a troubled person, t, we read "he had four major

breakdowns. Each time everyone suffered horribly." From the narrative it is clear

that  different  people  suffered  during  his  different  breakdowns.  His  parents  and

siblings at first, his partners later, eventually his children. t himself suffered during

two of the four, but the other two were euphoric and he was the one who did not.

So Rxy here is "person y figures in t’s life during breakdown x": who it includes

depends on which breakdown we are considering. There is an apparent violation of

the first order equivalence of "ALL.x ALL.y Rxy" and "All.y ALL.x Rxy" since it is not

true  that  everyone  suffered  during  each  of  t's  breakdowns,  if  the  wide-scope

"everyone" is taken to mean everyone figuring in t's life. 

[FTN:  is it an apparent or a real violation? It would be real if we took first order

logic  to  apply  whatever  the  restriction,  and  included  relational  restrictions.  For

many this would be sufficient reason not to do so. But one could also work out a

more subtle logic. 

quantifier ordering 

The focus of this paper is on ways of imposing ordering (scope) on quantifiers. This 

inevitably brings an emphasis on quantifiers in their "absolute" function, which 

specify how many individuals satisfy a relation's argument place rather than how 

many of those indexed by another quantifier satisfy it. For quantifiers not in the 

scope of others have to be absolute. In this section I describe a way of taking 

absolute quantifiers as basic and defining relative quantifiers in terms of them. 
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(a) unordered There are two basic types of multiple quantification. First there are

cases where all the stated quantifiers are absolute and thus unordered, as in the

examples from section [1]. In these it  is clear that extra information is usually

implicit or contextual. The information can often be given as relative quantifiers in

the scope of the state absolute quantifiers, as in the example from section 1 where

a standard meaning of "Six cats are chasing five dogs" has six cats chase five dogs,

leaving it open how many dogs (all? one? a few? each cat chases) and how many

cats chase each dog. The 'extra' quantifiers are best chosen so that negation is

well-defined without a great change of vocabulary. There are two aspects to this.

The extra quantifiers must be not very different from the duals of the explicit ones.

(The dual  of  a  quantifier  'Qx'  is  'not  Qx not',  as  with universal  and existential

quantifiers; the dual of a dual of a quantifier is the original quantifier; in appendix

[///] I give a list of duals of familiar quantifiers.) And, the other aspect, for every

pair of a quantifier Q and its dual Q we must construe one, normally the stronger

one as a conjunction and the other as a disjunction. If these conditions are satisfied

then "Most cats do not chase most dogs" is 

[**] NOT (Most.x Most.z.Chase.xz  & Most.y Most.w Chase.wy)
Cat x, Dog y

which is equivalent to

(Most.x Most.z NOT Chase.xz) OR Most.y Most.w NOT Chase.wy)

where  Most is  the  dual  of  Most,  in  English  "at  least  as  many as  not"  ("a  fair

number", "considerably many", "quite a few", so from a little less than most to all.).

The English for [the last of these] is “At least as many cats do not chase [most/very

many] dogs as do”, which is intuitively what the negation of [**] should be. I shall

take this as the default form of a multiple quantification without an ordering of the

stated quantifiers, in the absence of other information suggesting an alternative

choice. 

The choice of implicit relative quantifiers becomes less crucial when the quantifiers

are vague or have a wide range. If we take "most" to apply definitely from 70 to

100% and less definitely from 51 to 69% then its dual applies definitely from 50 to

100% and less definitely from 31 to 49%. The dual of "at least a thousand" is "at
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most 999". In both cases, and others like them, the formulation with the dual will

entail formulations with a wide range of other quantifiers filling the implicit slots. So

it is less important to pin down the exact quantifiers intended. Perhaps this is a

reason why absolute constructions often use vague quantifiers ("many of the cats

are chasing many of the dogs") while many constructions with explicit relative ones

use precise ones ("each of exactly three cats chased exactly two dogs.") 

[FTN the same would apply in terms of more sophisticated accounts of vagueness,

allowing higher-order vagueness.]

In many cases explicit absolute quantifiers need to be supplemented by implicit

relative ones. They do, that is, if we want to give the information supplied by the

Frege-Tarski absolute-then-relative pattern. But that pattern leaves out information

that absolute quantifiers can supply: "Each of two cats chased three dogs" leaves it

open where between three and six the total number of chased dogs lies. You choose

your idiom and then you improvise to communicate within its gaps. Elementary

equivalence is a far cry from isomorphism. 

(b) linear ordering  The other basic type has an ordering for the stated quantifiers,

where  each relative  quantifier  is  in  the  scope of  an  absolute  quantifier.  In  the

simplest case the quantifiers have a linear ordering, each in the scope of those to

its 'left'. Consider first the case of ALL and SOME with a two-place relation R. 

In the three cases of SOME.x ALL.y Rxy, SOME.x ALL.y Rxy, and All.x ALL.y Rxy,

both quantifiers are absolute, since SOME occurs only in initial position and ALL is

the  same  when  absolute  and  when  relative.  That  makes  the  prefixes  in  effect

unordered, so that we could write them in the traditional form I have just used, or

in a way that indicates lack of scope, such as

{SOME.x, ALL.y} Rxy or
SOME.x.

 Rxy   
ALL.y  

(See the remarks on this under partial ordering below.)

The remaining two SOME/ALL cases are SOME.x SOME.y Rxy and 
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ALL.x SOME.y Rxy. The first of these is unproblematic, since though only the first

SOME is strictly speaking absolute, when there is an individual a such that Ra _ can

be completed to a truth then any individual b making that completion, that is, such

that Rab is true, will make SOME.y Rby true and hence SOME.y SOME.x Rxy true.

[CLEARER?] So the sentence is true if and only if the two absolute SOME sentence,

which we might write

{SOME.x, SOME.y} Rxy or SOME.x  Rxy
SOME.y

is true.

[FTN: for simplicity I am saying that "Rab" is true rather than that <a,b> satisfies

"Rxy", but the difference makes no difference here. The case could also be handled

with a variable in a restriction, along the lines of the ALL.x SOME.y case below.]

That leaves ALL.x SOME.y Rxy to consider. Here the observation in the previous

section of quantifiers binding variables in restrictions ("all cats care for a majority of

their kittens") comes into play. Consider

ALL.x SOME.y Rxy  
 Ax, By, Rxy

This restricts values of y to individuals in B having R to x. So the effect is as if there

is a series of absolute SOMEs, each indexed to a value of x. ("All As have R to their

singularity of Bs". See the previous section.) (The analysis can also be explained as

an absolute second order existential postulating a Skolem function  f supplying a

possibly different fx for each value of x.) In this way we can describe Frege-Tarski

relative quantifiers in terms of absolute quantifiers.

[FTN: in the general case the restriction will involve the same R as in the scope

clause. But in many special cases a simpler restriction will do. For example if the

scope clause is "Sxy & Px" then the restriction can be to Sxy. There is a theorem

waiting to be stated giving necessary and sufficient conditions given a complex

matrix for a restriction that does the work of a Skolem function] 

The same ideas apply to longer quantifier prefixes. For example to distinguish 

ALL.x ALL.y SOME.z Rxyz
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from

ALL.x SOME.z ALL.y Rxyz

we need to ensure that SOME.z is in the scope of both ALL quantifiers in [the first]

but in the scope only of ALL.x in [the second.] The way to do this is to write [the

first] with explicit restrictions as

{ALL.x, ALL.y, SOME.z} Rxyz
Ax, By, Cz, Rxyz

and [the second] as

{ALL., SOME.z, ALL.y} Rxyz
Ax, By, Cz, Some z Rxyz    

[see theorem in appendix??]

(c) partial ordering   Scope selectivity can be pushed further. In

ALL.x ALL.y SOME.z SOME.w Rxyzw 
Ax, By, Cz, Dw, SOME.s SOME.t Rxszt, SOME.u SOME.v Ruyvw     

z is independent of y and w is independent of z, so it is equivalent to the branching 

formula

ALL.x SOME.z    
Fx & Gy & Hz & Iw & Rxyz 

ALL.y SOME.w   
Ax, By, Cz, Dw

Any quantifier prefix that can be represented in linear form with Skolem functions

can be represented in absolute-plus-restrictions form in this way. This should not be

surprising, since the notation marks independence, leaving dependence, the target

of Skolem functions, as the unmarked default. 

(See appendix /// : the result is subject to one proviso, which I state there.)

Henkin invented the standard notation here,  which I  am adapting.  Henkin only

considered  the  universal  and  existential  quantifiers,  and  only  gave  branching

interpretations  of  quantifier  blocks  which  themselves  contain  an  existential

quantifier within the scope of a universal. He could have considered branching pairs

of universal or existential quantifiers, but he stuck with the standard notation which

puts these in a row (at the price of arbitrary decisions about which is in the scope of

which; see (b) above.) He could have considered the prefix which has ALL.x on one

branch and SOME.y on another, but he did not since this is equivalent to the prefix
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SOME.y  ALL.x,  and  similarly  for  related  cases,  since  his  interest  was  in

modifications that expand the power of first order logic. [FTN]

Henkin also did not consider branching quantifiers besides ALL and SOME. This is a

topic has since attracted interest and which I discuss in the final section of this

paper. Since this section discusses various orderings of quantifiers, though, I should

mention that introducing a wider range of quantifiers makes some simple non-linear

orderings possible that are equivalent to linear prefixes if we consider just ALL and

SOME. For an example consider

ALL.x  MOST.y MOST.w Rxyzw
MOST.z

which is not equivalent to

ALL.x MOST.y MOST.z MOST.w Rxyzw

[check!]

For many generalized quantifiers the same devices can be applied. For example 

"Most x have R to most y", with “Most y” in the scope of “Most x” is

{MOST.x, MOST.y} Rxy 
  Ax, By, Rxy

Branching quantifiers present a problem for absorbing restrictions of universal and

existential  quantifiers into scope clauses.  The problem is  that the technique for

putting  restrictions  of  ALL  into  the  antecedents  of  a  conditional  puts  some

quantifiers found in restrictions within the scopes of others, and this may not be the

intended sense. Here is an example. 

When an Evans who loves all  their brothers marries a Jones who loves all  their

sisters the brothers of the Evans and the sisters of the Jones are witnesses at their

wedding 

The form of this, with the restrictions as restrictions, is 

ALL.x ALL.y Wxyzw
Ex, ALL.z (if Bxz then Lxz), Jy, ALL.w.(if Syw then Lyw)
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Note that this has quantifiers in restrictions binding variables in the scope clause.

Putting this in linear form in the usual way, we get something ill-formed, as with the

example (“All cats that chase all dogs fear them”) in the previous section. And as in

that case the transition to prenex form is somewhat less problematic, yielding 

[*]  x y z w ((Ex & Jy & (Bxz..Lxz) & (Syw..Lyw)) .. Wxyzw)

But now the two existential quantifiers are the scope of the two universals, so the

choice of z is a function of both x and y and and that of w a function of x, while it

should  at  least  be  an  allowable  meaning  that  each  is  governed  only  by  the

quantifier it restricts. (I would think this is the more natural interpretation: one

spouse  doesn't  help  choose  the  other  spouse's  witness.  In  fact  I  suspect  such

restrictions  are  one  of  the  most  promising  sources  for  branching  quantifiers  in

everyday speech.) 

There are two ways of reacting to this. The first would be to make the quantifier 

prefix in [*] branch. That would mean that branching prefixes, and thus ALL/SOME 

sentences which are less first-order than they seem, are much less exotic than they

are usually taken to be. The second would be to stick with the linear form and to 

accept that seemingly independent restrictions in fact are not. I think the first is the

more plausible.  

[FTN the example is meant to be simple but not to be one of the ALL ALL SOME 

SOME sentences for which the Skolem functions do separate into one-argument 

functions.]

donkey sentences

Geach's donkey sentence puzzle shows how idioms of natural language that are

easily taken as standard Frege-Tarski universal and existential quantifiers may turn

out to be something more general. Here are two sentences that raise the puzzle. Of

a devout woman it is said

[//] If she has a son, she'll make him become a priest

Or, urging that a dangerous person be excluded from a demonstration, someone 

says
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[\\] If he has a gun, he'll fire it at the police 

The difficulty interpreting these sentences is that the first, for example, cannot 

have the form "x (Son.x .. y.Priest.xy)", as that would make it true if she has a 

son but she makes someone else become a priest ; it cannot have the form 

"x y.(Son.x .. Priest.xy)" as that makes it true given that there are things that

are not her sons; and it cannot have the form "x y (Son.x .. Priest.xy)" as that

would have the unintended consequence that if she has four sons she will make

them all become priests. (And similarly for [\\] that if he has eight guns he'll fire all

eight.) In addition to these hazards, there is a major desideratum, of making sense

of the 'him'  and the 'it'  as legitimate anaphors rather  than as linguistic  quirks.

(Parallel  constructions  are  found  in  related  languages:  it  is  unlikely  to  be  an

unsystematic English idiom.)

[FTN not donkeys . confusing. and too much beating. Refs]

The solution, I believe, lies in thinking of the variety of things that quantifiers can

range over, and how they can tune the sense of other quantifiers. Consider first

some analogous sentences.

if the distance to the store is less than three kilometers , she'll walk it

if the number of feeding bowls is less than the number of cats, it won't be 

enough

In both  of  these  'it'  is  a  genuine  anaphoric  pronoun,  but  one that  refers  to  a

parameter of a quantifier, the threshold it postulates for the number of individuals

satisfying a criterion. Now consider an example nearer to our target class:

If she has one arrow remaining, she'll aim it at his heart 

Again 'it' is a real anaphor, and tied to a quantifier meaning 'at least one', but this

time it gives the appearance of referring to arrows rather than numbers of arrows. I

suggest, though, that it does so in a way that is parasitic on the quantity parameter

of the quantifier. That is, the sentence can be paraphrased as

If the number of her remaining arrows is one or greater then she'll take at 

least one and aim it at his heart

With this in mind, one line of solution is immediate. Suppose our devout mother will

have only two sons. Then [//] is equivalent to

x y ((z Son.z ..(z=x v z=y)) .. (Priest.x v Priest.y)) 
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There are linked anaphors here. x and y range together over all her sons, and the 

number 2 is present in both antecedent and consequent. The general case is

[**]  

n x1 ...xn (z (Son.z .. (z= x1 v ... v z= xn)) .. (Priest. x1 v ... v Priest. xn)) 

See how the variables over her sons and the number variable combine. And note

how the solution raises a question that has occurred twice already: when we have

one quantifier and when we have a series of  them. It would be nice to give a

formulation  without  the  indefinite  series  (the  ...).  Any such  formulation  will  go

beyond first order logic (as the quasi-infinitary [**] does.) One such would say that

there is an ordering fom 0 to some n of all the sons, such that if a son comes first

in the ordering then the mother makes him into a priest. Or more formally

[**o] n o ([0-n]o & z.m Romx & x (Ron.x . Priest.x))
Integer.n, Integer.m, Ordering.o

Here "[O-n]o" applies when o is an ordering of a set of individuals from 0 to n, and 

"Romx" applies when individual x has place m in ordering o.

There are versions of these that show how close to the surface form of [//] and [\\]

they are. 

[//*]  If she has one or more sons, she will work on the first or a later one and 

make a priest of him

[\\*]  If he has one or more guns, he'll take one and fire it at the police

  

'Him' in [//*] is now an anaphor referring both to to the number one and to a son

that it indexes. 'It'  in  [\\*] refers to the number one and to the gun that the

worrying  person  fires.  The  numerical-individual  quantifier  is  prompted  by  the

indefinite article  "a"in  [//] and  [\\],  which can serve both as "one" and as the

individual  quantifiers  SOME  and  ALL,  depending  on  context.  (Otherwise  similar

sentences without "a", such as "if she has sons she will make them into priests", or

"if  he has exactly one gun, he'll fire it at the police", do not take the Geachian

interpretation.) [//*] does not entail that only one son becomes a priest, or that all

file:////*
file:////*


19

her sons do. [\\*] is not true if he has no guns or because there are non-guns. So

they have the required features. 

The requirement that the pronoun be "a real anaphor" excludes the interpretation

[EE] "if she has a son then she will have a son she makes into a priest." ("If he has

a  gun then  he  will  have  a  gun  that  he  fires")  in  which  a  repeated  existential

quantifier does the work of "he" or "it". But a repeated quantifier is not a variable.

(It is at most "one of them" rather than "it".) Still, the double existential sentence

does tend to be true when the Geach sentence is. One way of bringing out the

difference between them is to consider that  [EE] "if she has a son then she will

have a son she makes into a priest" is consistent with [EE~] "if she has a son then

she will have a son she does not make into a priest.” (She may have two sons.) On

the other hand the combination of [//] "if she has a son she will make him into a

priest" and [//~] "if she has a son she will not make him into a priest" is at the

least peculiar and puzzling. A careful way to put this diference is that [//] and [//~]

entail "she will have no son", while [EE] and [EE~] do not. This is another reason

not to identify [//] and [EE].

This analysis puts these sentences, and donkey sentences in general, in a wide 

class of sentences with similar features. Examples are

If she has three sons then she'll make two into priests

If he has many guns then he'll fire several of them 

If she has a dozen sons, she'll make most into priests 

In all of these a smaller number of priests or firings is required by a larger number

of sons or guns. It is worth noting that we use natural language quantifiers to refer

to quantities as well as numbers, and that there too we use anaphoric pronouns in

a way that at once refers to the quantity thresholds and to the substances of which

these are quantities. For example

If he finds a pint or more of beer in the fridge he'll drink it in an hour

If one less gallon will bring the lake below the 1000 gallons needed to survive 

the summer then we had better not take it

If he has even a dollar more than a thousand he'll give it to you 

file:////*
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The last of these is particularly interesting, as the "it" at first seems to refer to a

particular dollar. But in fact it does not. (As a joke he might take a dollar off a pile

and say "here's the one I've been saving for you.") This is like the reference to an

integer or a threshold that disguises itself as a reference to a son or a gun. 

All of these sentences can bear other non-Geachian interpretations, but so can the

original donkey sentences. (Especially the original donkey sentences!) [///] can be

read as requiring that all of the devout woman's sons are turned into priests. And

as  many have  observed  which  reading  a  sentence  with  this  syntax  inclines  to

depends on details of context and vocabulary. (Though there are variants which are

much less ambiguous, such as "if he has guns then he'll fire at least one of them at

the police.")

The “Geach quantifier”, Qg [S,P]  formalized as either [**] or as [**o] is not a first

order quantifier. It cannot be represented as any combination of ., and Boolean

connectives. This is clear when one considers that “there are finitely many A” can

be expressed in terms of its negation, with A substituted for S and 

A & ~A  substituted for P. ~ Qg [A, A & ~A] is then 

n x1 … xn (z (Az .. (z= x1 v ... v z= xn )) & (Ax1 v ~ Ax1) & ... & (Axn v ~Axn))

which is equivalent to 

n x1 … xn (z (Az .. (z= x1 v ... v z= xn ))

As is  well-known “there are finitely many A” cannot be expressed in first-order

terms. It is interesting that both this and “there are at least as many A as B” can be

expressed with branching quantifiers. [FTN: Henkin, Boolos, Krynicki & Lachlan]

conclusion

Hintikka  raised  the  issue  of  whether  branching  quantifiers  can  give  accurate

formalizations  of  natural  language  sentences.  In  discussing  Hintikka,  and

Fauconnier's  criticism  of  Hintikka,  Barwise  introduced  the  idea  of  branching

generalized quantifiers, particularly cases where we have a binary branching of two

one-place quantifiers binding a two-place matrix, and Sher and others have refined
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and commented on his treatment.  I  have treated some such cases in terms of

unordered quantifiers supplemented by implicit quantifiers in restrictions.  To end

the  paper  I  shall  contrast  the  branching  quantifier  view  and  the  unordered

quantifier accounts. Although we have a lot of freedom in what we can mean by

quantified  syntactical  forms,  and  although we are  quite  ingenious in  explaining

which of the possibilities is the intended meaning, the unordered form is, I shall

argue, the best fit for these cases. 

A  quantifier  not  in  the  scope  of  another  quantifier  normally  takes  an  absolute

interpretation,  saying  how  many  individuals  from  the  domain  in  its  restriction

satisfy the relevant argument place of the scope clause, rather than the quantity for

each individual in the range of a wider scope quantifier. So when we have a binary

matrix (scope clause), we must have another quantifier, a relative one, specifying

what objects have the relation to those invoked by the absolute one. Barwise's

accommodation of this fact in his treatment of branching generalized quantifiers is

to make the other quantifiers universal. He gives two definitions, both generalizing

the use of Skolem functions in Henkin's approach:

Barwise   1) X .y [Q1x Xx & Q2y Yy & xy ((Xx & Yy ) .. Sxy)]
Ax, By

 Barwise   2) X .y [Q1x Xx & Q2y Yy & xy (Sxy.. (Xx & Yy))]
Ax, By

Barwise defends 1) for increasing quantifiers, where Qx Xx and X Y entail Qy Yy,

and 2) for decreasing quantifiers, where Qx Xx and Y  X entail Qy Yy. And indeed

1) makes little sense for decreasing Q nor 2) for increasing. So for MOST and ALL it

is 1) that is relevant. 

There are two problems with these definitions. First, they do not fit the meanings

that sentences like "most of the cats are chasing most of the dogs" normally have,

when neither "most" is taken as within the scope of the other. For "most",  the

Barwise version says that each of some majority set of cats chases each one of

some majority  set  of  dogs.  This  is  too strong in  two ways.  The first  is  that  it



22

requires that each of these cats chase each of these dogs. But surely as we usually

understand the sentence if the dogs chased by some members of a majority set of

cats  do  not  all  fall  into  the  [same?] majority  set  of  dogs  the  sentence  is  not

falsified. (We could take the union of the overlapping chased majorities, but this

could create a set that was too large for all of its members to be chased by most

chasers.) The second is that it requires that each cat chase a majority of the dogs.

But surely if one cat chased one short of a majority the sentence would not be

falsified, as long as most cats chase a fair  number of  dogs and most dogs are

chased by a fair number of cats. 

The other problem is that they are not closed under negation. The negations of (1)

and (2) will not be of those forms. For one thing the existential set quantifiers will

be turned into universals. So we are blocked from understanding e.g. "most of the

cats are chasing most of the dogs" except as "it is not the case that most of the

cats are chasing most of the dogs". We cannot understand it as "most of the cats

are not chasing most of the dogs".  This is a problem that affects Henkin's account

too, though it is less severe as he does not aim at an analysis of natural language,

and Hintikka's closely related "independence-friendly logic", where it is more severe

since he does so aim.  [FTN: when the branching is in the restrictions. see above]

Gila Sher has proposed an alternative to Barwise's analysis that is closer to the 

unordered treatment. On her account the non-linear application of Q1 and Q2 to a 

relation S is 

Q1x z Sxz & Q2y w Swy
  Ax, By

So for example "Most cats fear most dogs", where neither MOST is in the scope of

the other, would get an interpretation according to which it says that most cats fear

some dog and  most  dogs  are  feared  by  some cat.  Another  way  of  putting  it:

considering all the pairs that satisfy S, the first members amount to most of A and

the  second  members  amount  to  most  of  B.  Sher's  interpretation  has  several

advantages. It applies to both increasing and decreasing quantifiers, and indeed to

quantifiers that are neither. And it is better behaved under negation, since it has no

higher-order quantifiers. (There is a worry about the transformation of AND into



23

OR, though.)

Sher's definition has the disadvantage that it is very weak: often when we assert

e.g. that most of the cats fear most of the dogs we mean more than this. A variant

on Sher's definition, replacing the requirement that Q1 A have S to some B and Q2 B

have S to some A with a requirement that Q1 A have S to all B and Q2 B have S to

all A, would have the disadvantage of being too strong. 

The analysis of two quantifier sentences defended in this paper, which I have been

calling the unordered analysis, takes the full information non-linear application of Q1

and Q2 to a relation S to be 

Q1x Q1z Sxz & Q2y Q2w Swy 
Ax ,By  

where Qi is the dual of Qi. (I also argued that there are less than full information

versions, which are perfectly intelligible.) So "most of the cats are chasing most of

the dogs" becomes "most of the cats are chasing at least as many of the dogs as

not, and most of the dogs are being chased by at least as many of the dogs as not."

This is intermediate in strength between Sher's too-weak existential form and the

alternative too-strong universal form. And in general the use of dual quantifiers will

result  in  a  formulation  appropriately  between  these  extremes.  Moreover  the

analysis is closed under negation, especially when OR is taken as the dual of AND,

as explained in section [|||].  

Two or more unordered generalized quantifiers not in one another’s scope can be

treated  as  I  have  described.  Two  or  more  unordered  universal  and  existential

quantifiers  not  in  one  another’s  scope are  equivalent  to  linear  combinations  of

quantifiers, and thus do not branch in any interesting way. We could also have two

or more strings of quantifiers, either generalized, universal or existential, so that

the later quantifiers in each string are in the scope of earlier ones but the head

absolute quantifiers in each string are not in one another’s scope. Then we have

genuine  branching,  as  a  distinct  phenomenon  from  linear  and  unordered

quantifiers.  This  could occur with generalized quantifiers.  We could for  example

have 
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Most.x Some.y  Rxyzw
All.z   Few.w

But these have not been proposed as candidates for the analysis of sentences in

natural  language.  The  unordered  interpretation,  with  the  option  of  additional

implicit quantifiers as described, is a better fit for what we usually mean when we

use expressions such as “most of the cats were chasing a few of the dogs”. The

unordered  interpretation  is  thus  a  promising  candidate  as  an  interpretation  of

quantified sentences where none of the explicitly stated quantifiers is within the

scope of the others, and thus for an alternative to the Frege-Tarski analysis. Since

the surface structure of natural language quantified sentences gives so few clues to

their  interpretation,  though,  it  is  worth  repeating  what  a  wide  range  of

interpretations we are free to explain as our intentions. For one thing, mixtures of

the possibilities I have been describing are possible. We can for example apply my

favored unordered interpretation to combinations of Tarskian quantifiers, getting

what we can write as 

{x y, z w} Rxyzw  
st Rxyst  st Ruvzw 

and analyse as 

xyst Rxyst & zwst Ruvzw 

Such a formulation might for some purpose be exactly what we need.

[note on Lindstrom's  theorem: concerns taking a standard first  order  logic  and

adding more quantifiers. Does not say what happens if you withdraw and add or

change basic features of first order syntax for example by separating restrictions

from scope clauses. Further work.]
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Appendix: duals

Q = ~Q~ =
All some
Most > 1/2 at least as many as not

1/2 ≤ n ≤all, 50% and 

up
Many n > N few not
few (finite domain, 
proportional )

n < T/p fairly many n < sT/p

all but N (finite 
domain)

n > T+1-N T+1-N

at least N  (finite) > N-1 within N of the maximum >T-N  T=max
exactly N n = N n < N  or n > N+1 n not= N  Not exactly N
infinitely many all  n |A|>n cofinite A some n |~A|<n
finitely many some n |A|< n "coinfinite" all n |~A|>n
all but finitely many some n |~A|< n finitely many some n |A|< n
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appendix: counterexamples to equivalences with MOST, ALL, and related 

quantifiers

(a) "MOST x (if Ax then Bx)" true but "MOST x Bx" false: 

Ax

D[omain] = {1, 2, 3 , 4, 5, 6, 7}, A = {1, 2, 3} B = {1} 

(The entailment holds in the other direction.)

(b) " MOST x ALL y Rxy" true and "ALL x MOST y Rxy" false:

Ax, By Ax, By 

D = {1, 2, 3}, A=B=D, R ={(1,1), (1,2), (1,3), (2,1), (2, 2), (2,3)}

(c) "ALL x MOST y Rxy" true and "MOST x ALL y Rxy" false:

Ax, By Ax, By

D = {1, 2, 3}, A=B=D, R ={(1,1), (1,2), (2,1), (2, 2), (3,1), (3,2)}

(in fact no A has R to all B.)

(d) "MOST x MOST y Rxy" true and "MOST y MOST x Rxy" false:

Ax, By Ax, By

D = {1, 2, 3}, A=B=D, R ={(1,1), (1,2), (2,1), (2,3)} 

(e) "MOST x MOST y Rxy" and "ALL x MOST y Rxy" true and "MOST (x,y) Rxy" 

Ax, By Ax, By 
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false: D = {1, 2, a, b}, A = {1,2}, B = {a, b}, R ={(1,a), (1,b), (2,a), (2,b)} 

MISLEADING. Should relativize counts to A, B. Then equivalence true for small n, 

but pattern changes for n greater 5 [non-equivalence true then]

(f) Let ALL-n , for n > 0 ,mean “for all except n” (i.e. “for all with at most n 

exceptions"; ALL-0 is the standard universal quantifier.) Let ALL-fin mean “for all 

except finitely many”. In the model below all of (I) are true and all of (II) are false. 

(I suppress restrictions for simplicity.)

(I) ALL-fin x ALL-fin y Rxy 

ALL-n x ALL-fin y Rxy

ALL x ALL-fin y Rxy 

(II) ALL-fin y ALL-fin x Rxy

ALL-ny ALL-fin x Rxy

ALL-fin y ALL x Rxy 

ALL y ALL-fin x Rxy

ALL y ALL-n x Rxy 

Model: D = {1,2,3, ...}, Rij iff i < j . 

(For n=1, these can all be shown with 2-element models.) 
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(g) MOST x MOST y (Sxy & Rxy) & MOST z MOST w (Swz & Rwz)

Ax, By Bz, Aw

true but MOST pairs (x,y) (Sxy & Rx) false:

D = {1, 2, a, b}, A = {1,2}, B = {a, b}, R ={(1,a), (1,b), (2,a), (2,b)}

(Same model as in (e).)
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